1
0
Fork 0
mutter-performance-source/cogl/cogl-quaternion.c

664 lines
17 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*
* Various references relating to quaternions:
*
* http://www.cs.caltech.edu/courses/cs171/quatut.pdf
* http://mathworld.wolfram.com/Quaternion.html
* http://www.gamedev.net/reference/articles/article1095.asp
* http://www.cprogramming.com/tutorial/3d/quaternions.html
* http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm
* http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
* 3D Maths Primer for Graphics and Game Development ISBN-10: 1556229119
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <cogl-util.h>
#include <cogl-quaternion.h>
#include <cogl-quaternion-private.h>
#include <cogl-matrix.h>
#include <cogl-vector.h>
#include <cogl-euler.h>
#include <string.h>
#include <math.h>
#define FLOAT_EPSILON 1e-03
static CoglQuaternion zero_quaternion =
{
0.0, 0.0, 0.0, 0.0,
};
static CoglQuaternion identity_quaternion =
{
1.0, 0.0, 0.0, 0.0,
};
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 18:21:28 +00:00
/* This function is just here to be called from GDB so we don't really
want to put a declaration in a header and we just add it here to
avoid a warning */
void
_cogl_quaternion_print (CoglQuaternion *quarternion);
void
_cogl_quaternion_print (CoglQuaternion *quaternion)
{
g_print ("[ %6.4f (%6.4f, %6.4f, %6.4f)]\n",
quaternion->w,
quaternion->x,
quaternion->y,
quaternion->z);
}
void
cogl_quaternion_init (CoglQuaternion *quaternion,
float angle,
float x,
float y,
float z)
{
float axis[3] = { x, y, z};
cogl_quaternion_init_from_angle_vector (quaternion, angle, axis);
}
void
cogl_quaternion_init_from_angle_vector (CoglQuaternion *quaternion,
float angle,
const float *axis3f_in)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float axis[3];
float half_angle;
float sin_half_angle;
/* XXX: Should we make cogl_vector3_normalize have separate in and
* out args? */
axis[0] = axis3f_in[0];
axis[1] = axis3f_in[1];
axis[2] = axis3f_in[2];
cogl_vector3_normalize (axis);
half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
sin_half_angle = sinf (half_angle);
quaternion->w = cosf (half_angle);
quaternion->x = axis[0] * sin_half_angle;
quaternion->y = axis[1] * sin_half_angle;
quaternion->z = axis[2] * sin_half_angle;
cogl_quaternion_normalize (quaternion);
}
void
cogl_quaternion_init_identity (CoglQuaternion *quaternion)
{
quaternion->w = 1.0;
quaternion->x = 0.0;
quaternion->y = 0.0;
quaternion->z = 0.0;
}
void
cogl_quaternion_init_from_array (CoglQuaternion *quaternion,
const float *array)
{
quaternion->w = array[0];
quaternion->x = array[1];
quaternion->y = array[2];
quaternion->z = array[3];
}
void
cogl_quaternion_init_from_x_rotation (CoglQuaternion *quaternion,
float angle)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
quaternion->w = cosf (half_angle);
quaternion->x = sinf (half_angle);
quaternion->y = 0.0f;
quaternion->z = 0.0f;
}
void
cogl_quaternion_init_from_y_rotation (CoglQuaternion *quaternion,
float angle)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
quaternion->w = cosf (half_angle);
quaternion->x = 0.0f;
quaternion->y = sinf (half_angle);
quaternion->z = 0.0f;
}
void
cogl_quaternion_init_from_z_rotation (CoglQuaternion *quaternion,
float angle)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
quaternion->w = cosf (half_angle);
quaternion->x = 0.0f;
quaternion->y = 0.0f;
quaternion->z = sinf (half_angle);
}
void
cogl_quaternion_init_from_euler (CoglQuaternion *quaternion,
const CoglEuler *euler)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
float sin_heading =
sinf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float sin_pitch =
sinf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float sin_roll =
sinf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float cos_heading =
cosf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float cos_pitch =
cosf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
float cos_roll =
cosf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
quaternion->w =
cos_heading * cos_pitch * cos_roll +
sin_heading * sin_pitch * sin_roll;
quaternion->x =
cos_heading * sin_pitch * cos_roll +
sin_heading * cos_pitch * sin_roll;
quaternion->y =
sin_heading * cos_pitch * cos_roll -
cos_heading * sin_pitch * sin_roll;
quaternion->z =
cos_heading * cos_pitch * sin_roll -
sin_heading * sin_pitch * cos_roll;
}
void
cogl_quaternion_init_from_quaternion (CoglQuaternion *quaternion,
CoglQuaternion *src)
{
memcpy (quaternion, src, sizeof (float) * 4);
}
/* XXX: it could be nice to make something like this public... */
/*
* COGL_MATRIX_READ:
* @MATRIX: A 4x4 transformation matrix
* @ROW: The row of the value you want to read
* @COLUMN: The column of the value you want to read
*
* Reads a value from the given matrix using integers to index
* into the matrix.
*/
#define COGL_MATRIX_READ(MATRIX, ROW, COLUMN) \
(((const float *)matrix)[COLUMN * 4 + ROW])
void
cogl_quaternion_init_from_matrix (CoglQuaternion *quaternion,
const CoglMatrix *matrix)
{
/* Algorithm devised by Ken Shoemake, Ref:
* http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf
*/
/* 3D maths literature refers to the diagonal of a matrix as the
* "trace" of a matrix... */
float trace = matrix->xx + matrix->yy + matrix->zz;
float root;
if (trace > 0.0f)
{
root = sqrtf (trace + 1);
quaternion->w = root * 0.5f;
root = 0.5f / root;
quaternion->x = (matrix->zy - matrix->yz) * root;
quaternion->y = (matrix->xz - matrix->zx) * root;
quaternion->z = (matrix->yx - matrix->xy) * root;
}
else
{
#define X 0
#define Y 1
#define Z 2
#define W 3
int h = X;
if (matrix->yy > matrix->xx)
h = Y;
if (matrix->zz > COGL_MATRIX_READ (matrix, h, h))
h = Z;
switch (h)
{
#define CASE_MACRO(i, j, k, I, J, K) \
case I: \
root = sqrtf ((COGL_MATRIX_READ (matrix, I, I) - \
(COGL_MATRIX_READ (matrix, J, J) + \
COGL_MATRIX_READ (matrix, K, K))) + \
COGL_MATRIX_READ (matrix, W, W)); \
quaternion->i = root * 0.5f;\
root = 0.5f / root;\
quaternion->j = (COGL_MATRIX_READ (matrix, I, J) + \
COGL_MATRIX_READ (matrix, J, I)) * root; \
quaternion->k = (COGL_MATRIX_READ (matrix, K, I) + \
COGL_MATRIX_READ (matrix, I, K)) * root; \
quaternion->w = (COGL_MATRIX_READ (matrix, K, J) - \
COGL_MATRIX_READ (matrix, J, K)) * root;\
break
CASE_MACRO (x, y, z, X, Y, Z);
CASE_MACRO (y, z, x, Y, Z, X);
CASE_MACRO (z, x, y, Z, X, Y);
#undef CASE_MACRO
#undef X
#undef Y
#undef Z
}
}
if (matrix->ww != 1.0f)
{
float s = 1.0 / sqrtf (matrix->ww);
quaternion->w *= s;
quaternion->x *= s;
quaternion->y *= s;
quaternion->z *= s;
}
}
CoglBool
cogl_quaternion_equal (const void *v1, const void *v2)
{
const CoglQuaternion *a = v1;
const CoglQuaternion *b = v2;
_COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
_COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);
if (v1 == v2)
return TRUE;
return (a->w == b->w &&
a->x == b->x &&
a->y == b->y &&
a->z == b->z);
}
CoglQuaternion *
cogl_quaternion_copy (const CoglQuaternion *src)
{
if (G_LIKELY (src))
{
CoglQuaternion *new = g_slice_new (CoglQuaternion);
memcpy (new, src, sizeof (float) * 4);
return new;
}
else
return NULL;
}
void
cogl_quaternion_free (CoglQuaternion *quaternion)
{
g_slice_free (CoglQuaternion, quaternion);
}
float
cogl_quaternion_get_rotation_angle (const CoglQuaternion *quaternion)
{
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
/* FIXME: clamp [-1, 1] */
return 2.0f * acosf (quaternion->w) * _COGL_QUATERNION_RADIANS_TO_DEGREES;
}
void
cogl_quaternion_get_rotation_axis (const CoglQuaternion *quaternion,
float *vector3)
{
float sin_half_angle_sqr;
float one_over_sin_angle_over_2;
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
/* NB: sin²(𝜃) + cos²(𝜃) = 1 */
sin_half_angle_sqr = 1.0f - quaternion->w * quaternion->w;
if (sin_half_angle_sqr <= 0.0f)
{
/* Either an identity quaternion or numerical imprecision.
* Either way we return an arbitrary vector. */
vector3[0] = 1;
vector3[1] = 0;
vector3[2] = 0;
return;
}
/* Calculate 1 / sin(𝜃/2) */
one_over_sin_angle_over_2 = 1.0f / sqrtf (sin_half_angle_sqr);
vector3[0] = quaternion->x * one_over_sin_angle_over_2;
vector3[1] = quaternion->y * one_over_sin_angle_over_2;
vector3[2] = quaternion->z * one_over_sin_angle_over_2;
}
void
cogl_quaternion_normalize (CoglQuaternion *quaternion)
{
float slen = _COGL_QUATERNION_NORM (quaternion);
float factor = 1.0f / sqrtf (slen);
quaternion->x *= factor;
quaternion->y *= factor;
quaternion->z *= factor;
quaternion->w *= factor;
return;
}
float
cogl_quaternion_dot_product (const CoglQuaternion *a,
const CoglQuaternion *b)
{
return a->w * b->w + a->x * b->x + a->y * b->y + a->z * b->z;
}
void
cogl_quaternion_invert (CoglQuaternion *quaternion)
{
quaternion->x = -quaternion->x;
quaternion->y = -quaternion->y;
quaternion->z = -quaternion->z;
}
void
cogl_quaternion_multiply (CoglQuaternion *result,
const CoglQuaternion *a,
const CoglQuaternion *b)
{
float w = a->w;
float x = a->x;
float y = a->y;
float z = a->z;
_COGL_RETURN_IF_FAIL (b != result);
result->w = w * b->w - x * b->x - y * b->y - z * b->z;
result->x = w * b->x + x * b->w + y * b->z - z * b->y;
result->y = w * b->y + y * b->w + z * b->x - x * b->z;
result->z = w * b->z + z * b->w + x * b->y - y * b->x;
}
void
cogl_quaternion_pow (CoglQuaternion *quaternion, float exponent)
{
float half_angle;
float new_half_angle;
float factor;
/* Try and identify and nop identity quaternions to avoid
* dividing by zero */
if (fabs (quaternion->w) > 0.9999f)
return;
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
* in this form:
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
*/
/* FIXME: clamp [-1, 1] */
/* Extract 𝜃/2 from w */
half_angle = acosf (quaternion->w);
/* Compute the new 𝜃/2 */
new_half_angle = half_angle * exponent;
/* Compute the new w value */
quaternion->w = cosf (new_half_angle);
/* And new xyz values */
factor = sinf (new_half_angle) / sinf (half_angle);
quaternion->x *= factor;
quaternion->y *= factor;
quaternion->z *= factor;
}
void
cogl_quaternion_slerp (CoglQuaternion *result,
const CoglQuaternion *a,
const CoglQuaternion *b,
float t)
{
float cos_difference;
float qb_w;
float qb_x;
float qb_y;
float qb_z;
float fa;
float fb;
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
if (t == 0)
{
*result = *a;
return;
}
else if (t == 1)
{
*result = *b;
return;
}
/* compute the cosine of the angle between the two given quaternions */
cos_difference = cogl_quaternion_dot_product (a, b);
/* If negative, use -b. Two quaternions q and -q represent the same angle but
* may produce a different slerp. We choose b or -b to rotate using the acute
* angle.
*/
if (cos_difference < 0.0f)
{
qb_w = -b->w;
qb_x = -b->x;
qb_y = -b->y;
qb_z = -b->z;
cos_difference = -cos_difference;
}
else
{
qb_w = b->w;
qb_x = b->x;
qb_y = b->y;
qb_z = b->z;
}
/* If we have two unit quaternions the dot should be <= 1.0 */
g_assert (cos_difference < 1.1f);
/* Determine the interpolation factors for each quaternion, simply using
* linear interpolation for quaternions that are nearly exactly the same.
* (this will avoid divisions by zero)
*/
if (cos_difference > 0.9999f)
{
fa = 1.0f - t;
fb = t;
/* XXX: should we also normalize() at the end in this case? */
}
else
{
/* Calculate the sin of the angle between the two quaternions using the
* trig identity: sin²(𝜃) + cos²(𝜃) = 1
*/
float sin_difference = sqrtf (1.0f - cos_difference * cos_difference);
float difference = atan2f (sin_difference, cos_difference);
float one_over_sin_difference = 1.0f / sin_difference;
fa = sinf ((1.0f - t) * difference) * one_over_sin_difference;
fb = sinf (t * difference) * one_over_sin_difference;
}
/* Finally interpolate the two quaternions */
result->x = fa * a->x + fb * qb_x;
result->y = fa * a->y + fb * qb_y;
result->z = fa * a->z + fb * qb_z;
result->w = fa * a->w + fb * qb_w;
}
void
cogl_quaternion_nlerp (CoglQuaternion *result,
const CoglQuaternion *a,
const CoglQuaternion *b,
float t)
{
float cos_difference;
float qb_w;
float qb_x;
float qb_y;
float qb_z;
float fa;
float fb;
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
if (t == 0)
{
*result = *a;
return;
}
else if (t == 1)
{
*result = *b;
return;
}
/* compute the cosine of the angle between the two given quaternions */
cos_difference = cogl_quaternion_dot_product (a, b);
/* If negative, use -b. Two quaternions q and -q represent the same angle but
* may produce a different slerp. We choose b or -b to rotate using the acute
* angle.
*/
if (cos_difference < 0.0f)
{
qb_w = -b->w;
qb_x = -b->x;
qb_y = -b->y;
qb_z = -b->z;
cos_difference = -cos_difference;
}
else
{
qb_w = b->w;
qb_x = b->x;
qb_y = b->y;
qb_z = b->z;
}
/* If we have two unit quaternions the dot should be <= 1.0 */
g_assert (cos_difference < 1.1f);
fa = 1.0f - t;
fb = t;
result->x = fa * a->x + fb * qb_x;
result->y = fa * a->y + fb * qb_y;
result->z = fa * a->z + fb * qb_z;
result->w = fa * a->w + fb * qb_w;
cogl_quaternion_normalize (result);
}
void
cogl_quaternion_squad (CoglQuaternion *result,
const CoglQuaternion *prev,
const CoglQuaternion *a,
const CoglQuaternion *b,
const CoglQuaternion *next,
float t)
{
CoglQuaternion slerp0;
CoglQuaternion slerp1;
cogl_quaternion_slerp (&slerp0, a, b, t);
cogl_quaternion_slerp (&slerp1, prev, next, t);
cogl_quaternion_slerp (result, &slerp0, &slerp1, 2.0f * t * (1.0f - t));
}
const CoglQuaternion *
cogl_get_static_identity_quaternion (void)
{
return &identity_quaternion;
}
const CoglQuaternion *
cogl_get_static_zero_quaternion (void)
{
return &zero_quaternion;
}