1
0
Fork 0
mutter-performance-source/cogl/cogl-sub-texture.c

465 lines
15 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2009,2010,2011 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Neil Roberts <neil@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-util.h"
#include "cogl-texture-private.h"
#include "cogl-sub-texture-private.h"
#include "cogl-sub-texture.h"
#include "cogl-context-private.h"
#include "cogl-object.h"
#include "cogl-texture-driver.h"
#include "cogl-texture-rectangle-private.h"
#include "cogl-texture-2d.h"
#include "cogl-texture-gl-private.h"
#include <string.h>
#include <math.h>
static void _cogl_sub_texture_free (CoglSubTexture *sub_tex);
COGL_TEXTURE_DEFINE (SubTexture, sub_texture);
static const CoglTextureVtable cogl_sub_texture_vtable;
static void
_cogl_sub_texture_unmap_quad (CoglSubTexture *sub_tex,
float *coords)
{
CoglTexture *tex = COGL_TEXTURE (sub_tex);
/* NB: coords[] come in as non-normalized if sub_tex->full_texture
* is a CoglTextureRectangle otherwhise they are normalized. The
* coordinates we write out though must always be normalized.
*
* NB: sub_tex->sub_x/y/width/height are in non-normalized
* coordinates.
*/
if (cogl_is_texture_rectangle (sub_tex->full_texture))
2010-01-18 09:22:04 +00:00
{
coords[0] = (coords[0] - sub_tex->sub_x) / tex->width;
coords[1] = (coords[1] - sub_tex->sub_y) / tex->height;
coords[2] = (coords[2] - sub_tex->sub_x) / tex->width;
coords[3] = (coords[3] - sub_tex->sub_y) / tex->height;
2010-01-18 09:22:04 +00:00
}
else
{
float width = cogl_texture_get_width (sub_tex->full_texture);
float height = cogl_texture_get_height (sub_tex->full_texture);
coords[0] = (coords[0] * width - sub_tex->sub_x) / tex->width;
coords[1] = (coords[1] * height - sub_tex->sub_y) / tex->height;
coords[2] = (coords[2] * width - sub_tex->sub_x) / tex->width;
coords[3] = (coords[3] * height - sub_tex->sub_y) / tex->height;
2010-01-18 09:22:04 +00:00
}
}
static void
2010-01-18 09:22:04 +00:00
_cogl_sub_texture_map_quad (CoglSubTexture *sub_tex,
cogl: improves header and coding style consistency We've had complaints that our Cogl code/headers are a bit "special" so this is a first pass at tidying things up by giving them some consistency. These changes are all consistent with how new code in Cogl is being written, but the style isn't consistently applied across all code yet. There are two parts to this patch; but since each one required a large amount of effort to maintain tidy indenting it made sense to combine the changes to reduce the time spent re indenting the same lines. The first change is to use a consistent style for declaring function prototypes in headers. Cogl headers now consistently use this style for prototypes: return_type cogl_function_name (CoglType arg0, CoglType arg1); Not everyone likes this style, but it seems that most of the currently active Cogl developers agree on it. The second change is to constrain the use of redundant glib data types in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all been replaced with int, unsigned int, float, long, unsigned long and char respectively. When talking about pixel data; use of guchar has been replaced with guint8, otherwise unsigned char can be used. The glib types that we continue to use for portability are gboolean, gint{8,16,32,64}, guint{8,16,32,64} and gsize. The general intention is that Cogl should look palatable to the widest range of C programmers including those outside the Gnome community so - especially for the public API - we want to minimize the number of foreign looking typedefs.
2010-02-10 01:57:32 +00:00
float *coords)
{
CoglTexture *tex = COGL_TEXTURE (sub_tex);
/* NB: coords[] always come in as normalized coordinates but may go
* out as non-normalized if sub_tex->full_texture is a
* CoglTextureRectangle.
*
* NB: sub_tex->sub_x/y/width/height are in non-normalized
* coordinates.
*/
if (cogl_is_texture_rectangle (sub_tex->full_texture))
{
coords[0] = coords[0] * tex->width + sub_tex->sub_x;
coords[1] = coords[1] * tex->height + sub_tex->sub_y;
coords[2] = coords[2] * tex->width + sub_tex->sub_x;
coords[3] = coords[3] * tex->height + sub_tex->sub_y;
}
else
{
float width = cogl_texture_get_width (sub_tex->full_texture);
float height = cogl_texture_get_height (sub_tex->full_texture);
coords[0] = (coords[0] * tex->width + sub_tex->sub_x) / width;
coords[1] = (coords[1] * tex->height + sub_tex->sub_y) / height;
coords[2] = (coords[2] * tex->width + sub_tex->sub_x) / width;
coords[3] = (coords[3] * tex->height + sub_tex->sub_y) / height;
}
}
typedef struct _CoglSubTextureForeachData
{
CoglSubTexture *sub_tex;
CoglMetaTextureCallback callback;
void *user_data;
} CoglSubTextureForeachData;
static void
unmap_coords_cb (CoglTexture *slice_texture,
const float *slice_texture_coords,
const float *meta_coords,
void *user_data)
{
CoglSubTextureForeachData *data = user_data;
float unmapped_coords[4];
memcpy (unmapped_coords, meta_coords, sizeof (unmapped_coords));
_cogl_sub_texture_unmap_quad (data->sub_tex, unmapped_coords);
data->callback (slice_texture,
slice_texture_coords,
unmapped_coords,
data->user_data);
}
static void
_cogl_sub_texture_foreach_sub_texture_in_region (
CoglTexture *tex,
float virtual_tx_1,
float virtual_ty_1,
float virtual_tx_2,
float virtual_ty_2,
CoglMetaTextureCallback callback,
void *user_data)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
CoglTexture *full_texture = sub_tex->full_texture;
float mapped_coords[4] =
{ virtual_tx_1, virtual_ty_1, virtual_tx_2, virtual_ty_2};
float virtual_coords[4] =
{ virtual_tx_1, virtual_ty_1, virtual_tx_2, virtual_ty_2};
/* map the virtual coordinates to ->full_texture coordinates */
_cogl_sub_texture_map_quad (sub_tex, mapped_coords);
/* TODO: Add something like cogl_is_low_level_texture() */
if (cogl_is_texture_2d (full_texture) ||
cogl_is_texture_rectangle (full_texture))
{
callback (sub_tex->full_texture,
mapped_coords,
virtual_coords,
user_data);
}
else
{
CoglSubTextureForeachData data;
data.sub_tex = sub_tex;
data.callback = callback;
data.user_data = user_data;
cogl_meta_texture_foreach_in_region (COGL_META_TEXTURE (full_texture),
mapped_coords[0],
mapped_coords[1],
mapped_coords[2],
mapped_coords[3],
COGL_PIPELINE_WRAP_MODE_REPEAT,
COGL_PIPELINE_WRAP_MODE_REPEAT,
unmap_coords_cb,
&data);
}
}
static void
_cogl_sub_texture_gl_flush_legacy_texobj_wrap_modes (CoglTexture *tex,
GLenum wrap_mode_s,
GLenum wrap_mode_t,
GLenum wrap_mode_p)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
_cogl_texture_gl_flush_legacy_texobj_wrap_modes (sub_tex->full_texture,
wrap_mode_s,
wrap_mode_t,
wrap_mode_p);
}
static void
_cogl_sub_texture_free (CoglSubTexture *sub_tex)
{
cogl_object_unref (sub_tex->next_texture);
cogl_object_unref (sub_tex->full_texture);
/* Chain up */
_cogl_texture_free (COGL_TEXTURE (sub_tex));
}
CoglSubTexture *
cogl_sub_texture_new (CoglContext *ctx,
CoglTexture *next_texture,
int sub_x, int sub_y,
int sub_width, int sub_height)
{
CoglTexture *full_texture;
CoglSubTexture *sub_tex;
CoglTexture *tex;
unsigned int next_width, next_height;
2010-01-18 09:22:04 +00:00
next_width = cogl_texture_get_width (next_texture);
next_height = cogl_texture_get_height (next_texture);
2010-01-18 09:22:04 +00:00
/* The region must specify a non-zero subset of the full texture */
_COGL_RETURN_VAL_IF_FAIL (sub_x >= 0 && sub_y >= 0, NULL);
_COGL_RETURN_VAL_IF_FAIL (sub_width > 0 && sub_height > 0, NULL);
_COGL_RETURN_VAL_IF_FAIL (sub_x + sub_width <= next_width, NULL);
_COGL_RETURN_VAL_IF_FAIL (sub_y + sub_height <= next_height, NULL);
sub_tex = g_new (CoglSubTexture, 1);
tex = COGL_TEXTURE (sub_tex);
_cogl_texture_init (tex, ctx, sub_width, sub_height,
&cogl_sub_texture_vtable);
/* If the next texture is also a sub texture we can avoid one level
of indirection by referencing the full texture of that texture
instead. */
if (cogl_is_sub_texture (next_texture))
{
Add -Wmissing-declarations to maintainer flags and fix problems This option to GCC makes it give a warning whenever a global function is defined without a declaration. This should catch cases were we've defined a function but forgot to put it in a header. In that case it is either only used within one file so we should make it static or we should declare it in a header. The following changes where made to fix problems: • Some functions were made static • cogl-path.h (the one containing the 1.0 API) was split into two files, one defining the functions and one defining the enums so that cogl-path.c can include the enum and function declarations from the 2.0 API as well as the function declarations from the 1.0 API. • cogl2-clip-state has been removed. This only had one experimental function called cogl_clip_push_from_path but as this is unstable we might as well remove it favour of the equivalent cogl_framebuffer_* API. • The GLX, SDL and WGL winsys's now have a private header to define their get_vtable function instead of directly declaring in the C file where it is called. • All places that were calling COGL_OBJECT_DEFINE need to have the cogl_is_whatever function declared so these have been added either as a public function or in a private header. • Some files that were not including the header containing their function declarations have been fixed to do so. • Any unused error quark functions have been removed. If we later want them we should add them back one by one and add a declaration for them in a header. • _cogl_is_framebuffer has been renamed to cogl_is_framebuffer and made a public function with a declaration in cogl-framebuffer.h • Similarly for CoglOnscreen. • cogl_vdraw_indexed_attributes is called cogl_framebuffer_vdraw_indexed_attributes in the header. The definition has been changed to match the header. • cogl_index_buffer_allocate has been removed. This had no declaration and I'm not sure what it's supposed to do. • CoglJournal has been changed to use the internal CoglObject macro so that it won't define an exported cogl_is_journal symbol. • The _cogl_blah_pointer_from_handle functions have been removed. CoglHandle isn't used much anymore anyway and in the few places where it is used I think it's safe to just use the implicit cast from void* to the right type. • The test-utils.h header for the conformance tests explicitly disables the -Wmissing-declaration option using a pragma because all of the tests declare their main function without a header. Any mistakes relating to missing declarations aren't really important for the tests. • cogl_quaternion_init_from_quaternion and init_from_matrix have been given declarations in cogl-quaternion.h Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-03-06 18:21:28 +00:00
CoglSubTexture *other_sub_tex = COGL_SUB_TEXTURE (next_texture);
full_texture = other_sub_tex->full_texture;
sub_x += other_sub_tex->sub_x;
sub_y += other_sub_tex->sub_y;
}
else
full_texture = next_texture;
sub_tex->next_texture = cogl_object_ref (next_texture);
sub_tex->full_texture = cogl_object_ref (full_texture);
2010-01-18 09:22:04 +00:00
sub_tex->sub_x = sub_x;
sub_tex->sub_y = sub_y;
return _cogl_sub_texture_object_new (sub_tex);
}
static CoglBool
_cogl_sub_texture_allocate (CoglTexture *tex,
CoglError **error)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return cogl_texture_allocate (sub_tex->full_texture, error);
}
CoglTexture *
cogl_sub_texture_get_parent (CoglSubTexture *sub_texture)
{
return sub_texture->next_texture;
}
cogl: improves header and coding style consistency We've had complaints that our Cogl code/headers are a bit "special" so this is a first pass at tidying things up by giving them some consistency. These changes are all consistent with how new code in Cogl is being written, but the style isn't consistently applied across all code yet. There are two parts to this patch; but since each one required a large amount of effort to maintain tidy indenting it made sense to combine the changes to reduce the time spent re indenting the same lines. The first change is to use a consistent style for declaring function prototypes in headers. Cogl headers now consistently use this style for prototypes: return_type cogl_function_name (CoglType arg0, CoglType arg1); Not everyone likes this style, but it seems that most of the currently active Cogl developers agree on it. The second change is to constrain the use of redundant glib data types in Cogl. Uses of gint, guint, gfloat, glong, gulong and gchar have all been replaced with int, unsigned int, float, long, unsigned long and char respectively. When talking about pixel data; use of guchar has been replaced with guint8, otherwise unsigned char can be used. The glib types that we continue to use for portability are gboolean, gint{8,16,32,64}, guint{8,16,32,64} and gsize. The general intention is that Cogl should look palatable to the widest range of C programmers including those outside the Gnome community so - especially for the public API - we want to minimize the number of foreign looking typedefs.
2010-02-10 01:57:32 +00:00
static int
_cogl_sub_texture_get_max_waste (CoglTexture *tex)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return cogl_texture_get_max_waste (sub_tex->full_texture);
}
static CoglBool
_cogl_sub_texture_is_sliced (CoglTexture *tex)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return cogl_texture_is_sliced (sub_tex->full_texture);
}
static CoglBool
_cogl_sub_texture_can_hardware_repeat (CoglTexture *tex)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
2010-01-18 09:22:04 +00:00
/* We can hardware repeat if the subtexture actually represents all of the
of the full texture */
return (tex->width ==
2010-01-18 09:22:04 +00:00
cogl_texture_get_width (sub_tex->full_texture) &&
tex->height ==
2010-01-18 09:22:04 +00:00
cogl_texture_get_height (sub_tex->full_texture) &&
_cogl_texture_can_hardware_repeat (sub_tex->full_texture));
}
static void
_cogl_sub_texture_transform_coords_to_gl (CoglTexture *tex,
float *s,
float *t)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
2010-01-18 09:22:04 +00:00
/* This won't work if the sub texture is not the size of the full
texture and the coordinates are outside the range [0,1] */
*s = ((*s * tex->width + sub_tex->sub_x) /
2010-01-18 09:22:04 +00:00
cogl_texture_get_width (sub_tex->full_texture));
*t = ((*t * tex->height + sub_tex->sub_y) /
2010-01-18 09:22:04 +00:00
cogl_texture_get_height (sub_tex->full_texture));
_cogl_texture_transform_coords_to_gl (sub_tex->full_texture, s, t);
2010-01-18 09:22:04 +00:00
}
static CoglTransformResult
2010-01-18 09:22:04 +00:00
_cogl_sub_texture_transform_quad_coords_to_gl (CoglTexture *tex,
float *coords)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
int i;
/* We can't support repeating with this method. In this case
cogl-primitives will resort to manual repeating */
for (i = 0; i < 4; i++)
if (coords[i] < 0.0f || coords[i] > 1.0f)
return COGL_TRANSFORM_SOFTWARE_REPEAT;
2010-01-18 09:22:04 +00:00
_cogl_sub_texture_map_quad (sub_tex, coords);
return _cogl_texture_transform_quad_coords_to_gl (sub_tex->full_texture,
coords);
}
static CoglBool
_cogl_sub_texture_get_gl_texture (CoglTexture *tex,
GLuint *out_gl_handle,
GLenum *out_gl_target)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return cogl_texture_get_gl_texture (sub_tex->full_texture,
out_gl_handle,
out_gl_target);
}
static void
_cogl_sub_texture_gl_flush_legacy_texobj_filters (CoglTexture *tex,
GLenum min_filter,
GLenum mag_filter)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
_cogl_texture_gl_flush_legacy_texobj_filters (sub_tex->full_texture,
min_filter, mag_filter);
}
static void
_cogl_sub_texture_pre_paint (CoglTexture *tex,
CoglTexturePrePaintFlags flags)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
_cogl_texture_pre_paint (sub_tex->full_texture, flags);
}
static void
2010-01-18 09:22:04 +00:00
_cogl_sub_texture_ensure_non_quad_rendering (CoglTexture *tex)
{
}
static CoglBool
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
_cogl_sub_texture_set_region (CoglTexture *tex,
int src_x,
int src_y,
int dst_x,
int dst_y,
int dst_width,
int dst_height,
int level,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
CoglBitmap *bmp,
CoglError **error)
{
2010-01-18 09:22:04 +00:00
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
if (level != 0)
{
int full_width = cogl_texture_get_width (sub_tex->full_texture);
int full_height = cogl_texture_get_width (sub_tex->full_texture);
_COGL_RETURN_VAL_IF_FAIL (sub_tex->sub_x == 0 &&
cogl_texture_get_width (tex) == full_width,
FALSE);
_COGL_RETURN_VAL_IF_FAIL (sub_tex->sub_y == 0 &&
cogl_texture_get_height (tex) == full_height,
FALSE);
}
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
return _cogl_texture_set_region_from_bitmap (sub_tex->full_texture,
src_x, src_y,
dst_width, dst_height,
bmp,
dst_x + sub_tex->sub_x,
dst_y + sub_tex->sub_y,
level,
Allow propogation of OOM errors to apps This allows apps to catch out-of-memory errors when allocating textures. Textures can be pretty huge at times and so it's quite possible for an application to try and allocate more memory than is available. It's also very possible that the application can take some action in response to reduce memory pressure (such as freeing up texture caches perhaps) so we shouldn't just automatically abort like we do for trivial heap allocations. These public functions now take a CoglError argument so applications can catch out of memory errors: cogl_buffer_map cogl_buffer_map_range cogl_buffer_set_data cogl_framebuffer_read_pixels_into_bitmap cogl_pixel_buffer_new cogl_texture_new_from_data cogl_texture_new_from_bitmap Note: we've been quite conservative with how many apis we let throw OOM CoglErrors since we don't really want to put a burdon on developers to be checking for errors with every cogl api call. So long as there is some lower level api for apps to use that let them catch OOM errors for everything necessary that's enough and we don't have to make more convenient apis more awkward to use. The main focus is on bitmaps and texture allocations since they can be particularly large and prone to failing. A new cogl_attribute_buffer_new_with_size() function has been added in case developers need to catch OOM errors when allocating attribute buffers whereby they can first use _buffer_new_with_size() (which doesn't take a CoglError) followed by cogl_buffer_set_data() which will lazily allocate the buffer storage and report OOM errors. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit f7735e141ad537a253b02afa2a8238f96340b978) Note: since we can't break the API for Cogl 1.x then actually the main purpose of cherry picking this patch is to keep in-line with changes on the master branch so that we can easily cherry-pick patches. All the api changes relating stable apis released on the 1.12 branch have been reverted as part of cherry-picking this patch so this most just applies all the internal plumbing changes that enable us to correctly propagate OOM errors.
2012-11-08 17:54:10 +00:00
error);
}
static CoglPixelFormat
_cogl_sub_texture_get_format (CoglTexture *tex)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return _cogl_texture_get_format (sub_tex->full_texture);
}
static GLenum
_cogl_sub_texture_get_gl_format (CoglTexture *tex)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return _cogl_texture_gl_get_format (sub_tex->full_texture);
}
static CoglTextureType
_cogl_sub_texture_get_type (CoglTexture *tex)
{
CoglSubTexture *sub_tex = COGL_SUB_TEXTURE (tex);
return _cogl_texture_get_type (sub_tex->full_texture);
}
static const CoglTextureVtable
cogl_sub_texture_vtable =
{
FALSE, /* not primitive */
_cogl_sub_texture_allocate,
_cogl_sub_texture_set_region,
NULL, /* get_data */
_cogl_sub_texture_foreach_sub_texture_in_region,
_cogl_sub_texture_get_max_waste,
_cogl_sub_texture_is_sliced,
_cogl_sub_texture_can_hardware_repeat,
_cogl_sub_texture_transform_coords_to_gl,
2010-01-18 09:22:04 +00:00
_cogl_sub_texture_transform_quad_coords_to_gl,
_cogl_sub_texture_get_gl_texture,
_cogl_sub_texture_gl_flush_legacy_texobj_filters,
_cogl_sub_texture_pre_paint,
2010-01-18 09:22:04 +00:00
_cogl_sub_texture_ensure_non_quad_rendering,
_cogl_sub_texture_gl_flush_legacy_texobj_wrap_modes,
_cogl_sub_texture_get_format,
_cogl_sub_texture_get_gl_format,
_cogl_sub_texture_get_type,
NULL, /* is_foreign */
NULL /* set_auto_mipmap */
};