1
0
Fork 0
mutter-performance-source/clutter/cogl/gl/cogl-texture.c

1988 lines
53 KiB
C
Raw Normal View History

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*
* Authors:
* Matthew Allum <mallum@openedhand.com>
* Neil Roberts <neil@linux.intel.com>
* Robert Bragg <robert@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-util.h"
#include "cogl-bitmap.h"
#include "cogl-bitmap-private.h"
#include "cogl-texture-private.h"
#include "cogl-material.h"
#include "cogl-context.h"
Removed COGLhandle and changed shader and program functions to be wrapped in reference-counted CoglHandles instead. * clutter/cogl/gl/cogl-shader.c: * clutter/cogl/gl/cogl-shader.h: * clutter/cogl/gl/cogl-program.c: * clutter/cogl/gl/cogl-program.h: New files to hold the shader and program functions. * clutter/cogl/gl/cogl.c: Removed shader and program functions. * clutter/cogl/common/cogl-handle.h: New header to define COGL_HANDLE_DEFINE which helps build functions to create reference-counted handles. This reduces the amount of duplicated code. * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gl/cogl-fbo.c: Converted to use COGL_HANDLE_DEFINE from cogl-handle.h to avoid duplicating some of the common code. * clutter/cogl/gles/cogl-defines.h.in: * clutter/cogl/gl/cogl-defines.h.in: Removed COGLhandle * clutter/cogl/gl/cogl-context.h: Added handle arrays for programs and shaders. * clutter/cogl/gl/cogl-context.c (cogl_create_context): Added initialisers for shader_handles and program_handles. (cogl_destroy_context): Added calls to g_array_free for all handle arrays. * clutter/cogl/gl/Makefile.am (libclutter_cogl_la_SOURCES): Added cogl-{program,shader}.{c,h} * clutter/cogl/common/Makefile.am (libclutter_cogl_common_la_SOURCES): Added cogl-handle.h * clutter/cogl/gles/cogl.c: * clutter/cogl/cogl.h.in: Programs and shaders are now wrapped in CoglHandles instead of COGLhandles. cogl_program_destroy and cogl_shader_destroy is now replaced with cogl_program_unref and cogl_shader_unref. cogl_program_ref and cogl_shader_ref are also added. * clutter/clutter-shader.c: Converted to use CoglHandles for the programs and shaders instead of COGLhandles. * cogl/cogl-sections.txt: Added cogl_shader_ref, cogl_shader_unref, cogl_is_shader, cogl_program_ref, cogl_program_unref, cogl_is_program and cogl_is_offscreen.
2008-04-29 16:10:37 +00:00
#include "cogl-handle.h"
#include <string.h>
#include <stdlib.h>
#include <math.h>
#ifdef HAVE_COGL_GL
#define glDrawRangeElements ctx->pf_glDrawRangeElements
#define glActiveTexture ctx->pf_glActiveTexture
#define glClientActiveTexture ctx->pf_glClientActiveTexture
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
#define glGenerateMipmap ctx->pf_glGenerateMipmapEXT
#else
/* GLES doesn't have glDrawRangeElements, so we simply pretend it does
* but that it makes no use of the start, end constraints: */
#define glDrawRangeElements(mode, start, end, count, type, indices) \
glDrawElements (mode, count, type, indices)
#endif
extern void _cogl_journal_flush (void);
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
static void _cogl_texture_free (CoglTexture *tex);
COGL_HANDLE_DEFINE (Texture, texture);
static void
_cogl_texture_bitmap_free (CoglTexture *tex)
{
if (tex->bitmap.data != NULL && tex->bitmap_owner)
g_free (tex->bitmap.data);
tex->bitmap.data = NULL;
tex->bitmap_owner = FALSE;
}
static void
_cogl_texture_bitmap_swap (CoglTexture *tex,
CoglBitmap *new_bitmap)
{
if (tex->bitmap.data != NULL && tex->bitmap_owner)
g_free (tex->bitmap.data);
tex->bitmap = *new_bitmap;
tex->bitmap_owner = TRUE;
}
static void
_cogl_span_iter_update (CoglSpanIter *iter)
{
/* Pick current span */
iter->span = &g_array_index (iter->array,
CoglTexSliceSpan,
iter->index);
/* Offset next position by span size */
iter->next_pos = iter->pos +
(float)(iter->span->size - iter->span->waste);
/* Check if span intersects the area to cover */
if (iter->next_pos <= iter->cover_start ||
iter->pos >= iter->cover_end)
{
/* Intersection undefined */
iter->intersects = FALSE;
return;
}
iter->intersects = TRUE;
/* Clip start position to coverage area */
if (iter->pos < iter->cover_start)
iter->intersect_start = iter->cover_start;
else
iter->intersect_start = iter->pos;
/* Clip end position to coverage area */
if (iter->next_pos > iter->cover_end)
iter->intersect_end = iter->cover_end;
else
iter->intersect_end = iter->next_pos;
}
void
_cogl_span_iter_begin (CoglSpanIter *iter,
GArray *array,
float origin,
float cover_start,
float cover_end)
{
/* Copy info */
iter->index = 0;
iter->array = array;
iter->span = NULL;
iter->origin = origin;
iter->cover_start = cover_start;
iter->cover_end = cover_end;
iter->pos = iter->origin;
/* Update intersection */
_cogl_span_iter_update (iter);
}
void
_cogl_span_iter_next (CoglSpanIter *iter)
{
/* Move current position */
iter->pos = iter->next_pos;
/* Pick next slice (wrap when last reached) */
iter->index = (iter->index + 1) % iter->array->len;
/* Update intersection */
_cogl_span_iter_update (iter);
}
gboolean
_cogl_span_iter_end (CoglSpanIter *iter)
{
/* End reached when whole area covered */
return iter->pos >= iter->cover_end;
}
static void
prep_for_gl_pixels_upload (gint pixels_rowstride,
gint pixels_src_x,
gint pixels_src_y,
gint pixels_bpp)
{
GE( glPixelStorei (GL_UNPACK_ROW_LENGTH, pixels_rowstride / pixels_bpp) );
GE( glPixelStorei (GL_UNPACK_SKIP_PIXELS, pixels_src_x) );
GE( glPixelStorei (GL_UNPACK_SKIP_ROWS, pixels_src_y) );
if (!(pixels_rowstride & 0x7))
GE( glPixelStorei (GL_UNPACK_ALIGNMENT, 8) );
else if (!(pixels_rowstride & 0x3))
GE( glPixelStorei (GL_UNPACK_ALIGNMENT, 4) );
else if (!(pixels_rowstride & 0x1))
GE( glPixelStorei (GL_UNPACK_ALIGNMENT, 2) );
else
GE( glPixelStorei (GL_UNPACK_ALIGNMENT, 1) );
}
static void
prep_for_gl_pixels_download (gint pixels_rowstride)
{
if (!(pixels_rowstride & 0x7))
GE( glPixelStorei (GL_PACK_ALIGNMENT, 8) );
else if (!(pixels_rowstride & 0x3))
GE( glPixelStorei (GL_PACK_ALIGNMENT, 4) );
else if (!(pixels_rowstride & 0x1))
GE( glPixelStorei (GL_PACK_ALIGNMENT, 2) );
else
GE( glPixelStorei (GL_PACK_ALIGNMENT, 1) );
}
static guchar *
_cogl_texture_allocate_waste_buffer (CoglTexture *tex)
{
CoglTexSliceSpan *last_x_span;
CoglTexSliceSpan *last_y_span;
guchar *waste_buf = NULL;
/* If the texture has any waste then allocate a buffer big enough to
fill the gaps */
last_x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan,
tex->slice_x_spans->len - 1);
last_y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan,
tex->slice_y_spans->len - 1);
if (last_x_span->waste > 0 || last_y_span->waste > 0)
{
gint bpp = _cogl_get_format_bpp (tex->bitmap.format);
CoglTexSliceSpan *first_x_span
= &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, 0);
CoglTexSliceSpan *first_y_span
= &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, 0);
guint right_size = first_y_span->size * last_x_span->waste;
guint bottom_size = first_x_span->size * last_y_span->waste;
waste_buf = g_malloc (MAX (right_size, bottom_size) * bpp);
}
return waste_buf;
}
static gboolean
_cogl_texture_upload_to_gl (CoglTexture *tex)
{
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
GLuint gl_handle;
gint bpp;
gint x,y;
guchar *waste_buf;
bpp = _cogl_get_format_bpp (tex->bitmap.format);
waste_buf = _cogl_texture_allocate_waste_buffer (tex);
/* Iterate vertical slices */
for (y = 0; y < tex->slice_y_spans->len; ++y)
{
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, y);
/* Iterate horizontal slices */
for (x = 0; x < tex->slice_x_spans->len; ++x)
{
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
gint slice_num = y * tex->slice_x_spans->len + x;
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, x);
/* Pick the gl texture object handle */
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
gl_handle = g_array_index (tex->slice_gl_handles, GLuint, slice_num);
/* Setup gl alignment to match rowstride and top-left corner */
prep_for_gl_pixels_upload (tex->bitmap.rowstride,
x_span->start,
y_span->start,
bpp);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Keep a copy of the first pixel if needed */
if (tex->first_pixels)
{
memcpy (tex->first_pixels[slice_num].data,
tex->bitmap.data + x_span->start * bpp
+ y_span->start * tex->bitmap.rowstride,
bpp);
tex->first_pixels[slice_num].gl_format = tex->gl_format;
tex->first_pixels[slice_num].gl_type = tex->gl_type;
}
/* Upload new image data */
GE( glBindTexture (tex->gl_target, gl_handle) );
GE( glTexSubImage2D (tex->gl_target, 0,
0,
0,
x_span->size - x_span->waste,
y_span->size - y_span->waste,
tex->gl_format, tex->gl_type,
tex->bitmap.data) );
/* Fill the waste with a copies of the rightmost pixels */
if (x_span->waste > 0)
{
const guchar *src = tex->bitmap.data
+ y_span->start * tex->bitmap.rowstride
+ (x_span->start + x_span->size - x_span->waste - 1) * bpp;
guchar *dst = waste_buf;
guint wx, wy;
for (wy = 0; wy < y_span->size - y_span->waste; wy++)
{
for (wx = 0; wx < x_span->waste; wx++)
{
memcpy (dst, src, bpp);
dst += bpp;
}
src += tex->bitmap.rowstride;
}
prep_for_gl_pixels_upload (x_span->waste * bpp,
0, /* src x */
0, /* src y */
bpp);
GE( glTexSubImage2D (tex->gl_target, 0,
x_span->size - x_span->waste,
0,
x_span->waste,
y_span->size - y_span->waste,
tex->gl_format, tex->gl_type,
waste_buf) );
}
if (y_span->waste > 0)
{
const guchar *src = tex->bitmap.data
+ ((y_span->start + y_span->size - y_span->waste - 1)
* tex->bitmap.rowstride)
+ x_span->start * bpp;
guchar *dst = waste_buf;
guint wy, wx;
for (wy = 0; wy < y_span->waste; wy++)
{
memcpy (dst, src, (x_span->size - x_span->waste) * bpp);
dst += (x_span->size - x_span->waste) * bpp;
for (wx = 0; wx < x_span->waste; wx++)
{
memcpy (dst, dst - bpp, bpp);
dst += bpp;
}
}
prep_for_gl_pixels_upload (x_span->size * bpp,
0, /* src x */
0, /* src y */
bpp);
GE( glTexSubImage2D (tex->gl_target, 0,
0,
y_span->size - y_span->waste,
x_span->size,
y_span->waste,
tex->gl_format, tex->gl_type,
waste_buf) );
}
}
}
if (waste_buf)
g_free (waste_buf);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->mipmaps_dirty = TRUE;
return TRUE;
}
static gboolean
_cogl_texture_download_from_gl (CoglTexture *tex,
CoglBitmap *target_bmp,
GLuint target_gl_format,
GLuint target_gl_type)
{
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
GLuint gl_handle;
gint bpp;
gint x,y;
CoglBitmap slice_bmp;
bpp = _cogl_get_format_bpp (target_bmp->format);
/* Iterate vertical slices */
for (y = 0; y < tex->slice_y_spans->len; ++y)
{
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, y);
/* Iterate horizontal slices */
for (x = 0; x < tex->slice_x_spans->len; ++x)
{
/*if (x != 0 || y != 1) continue;*/
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, x);
/* Pick the gl texture object handle */
gl_handle = g_array_index (tex->slice_gl_handles, GLuint,
y * tex->slice_x_spans->len + x);
/* If there's any waste we need to copy manually
(no glGetTexSubImage) */
if (y_span->waste != 0 || x_span->waste != 0)
{
/* Setup temp bitmap for slice subregion */
slice_bmp.format = tex->bitmap.format;
slice_bmp.width = x_span->size;
slice_bmp.height = y_span->size;
slice_bmp.rowstride = bpp * slice_bmp.width;
slice_bmp.data = (guchar*) g_malloc (slice_bmp.rowstride *
slice_bmp.height);
/* Setup gl alignment to 0,0 top-left corner */
prep_for_gl_pixels_download (slice_bmp.rowstride);
/* Download slice image data into temp bmp */
GE( glBindTexture (tex->gl_target, gl_handle) );
GE (glGetTexImage (tex->gl_target,
0, /* level */
target_gl_format,
target_gl_type,
slice_bmp.data) );
/* Copy portion of slice from temp to target bmp */
_cogl_bitmap_copy_subregion (&slice_bmp,
target_bmp,
0, 0,
x_span->start,
y_span->start,
x_span->size - x_span->waste,
y_span->size - y_span->waste);
/* Free temp bitmap */
g_free (slice_bmp.data);
}
else
{
GLvoid *dst = target_bmp->data
+ x_span->start * bpp
+ y_span->start * target_bmp->rowstride;
prep_for_gl_pixels_download (target_bmp->rowstride);
/* Download slice image data */
GE( glBindTexture (tex->gl_target, gl_handle) );
GE( glGetTexImage (tex->gl_target,
0, /* level */
target_gl_format,
target_gl_type,
dst) );
}
}
}
return TRUE;
}
static gboolean
_cogl_texture_upload_subregion_to_gl (CoglTexture *tex,
gint src_x,
gint src_y,
gint dst_x,
gint dst_y,
gint width,
gint height,
CoglBitmap *source_bmp,
GLuint source_gl_format,
GLuint source_gl_type)
{
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
gint bpp;
CoglSpanIter x_iter;
CoglSpanIter y_iter;
GLuint gl_handle;
gint source_x = 0, source_y = 0;
gint inter_w = 0, inter_h = 0;
gint local_x = 0, local_y = 0;
guchar *waste_buf;
bpp = _cogl_get_format_bpp (source_bmp->format);
waste_buf = _cogl_texture_allocate_waste_buffer (tex);
/* Iterate vertical spans */
for (source_y = src_y,
_cogl_span_iter_begin (&y_iter, tex->slice_y_spans,
0, (float)(dst_y),
(float)(dst_y + height));
!_cogl_span_iter_end (&y_iter);
_cogl_span_iter_next (&y_iter),
source_y += inter_h )
{
/* Discard slices out of the subregion early */
if (!y_iter.intersects)
{
inter_h = 0;
continue;
}
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan,
y_iter.index);
/* Iterate horizontal spans */
for (source_x = src_x,
_cogl_span_iter_begin (&x_iter, tex->slice_x_spans,
0, (float)(dst_x),
(float)(dst_x + width));
!_cogl_span_iter_end (&x_iter);
_cogl_span_iter_next (&x_iter),
source_x += inter_w )
{
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
gint slice_num;
/* Discard slices out of the subregion early */
if (!x_iter.intersects)
{
inter_w = 0;
continue;
}
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan,
x_iter.index);
/* Pick intersection width and height */
inter_w = (x_iter.intersect_end -
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
x_iter.intersect_start);
inter_h = (y_iter.intersect_end -
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
y_iter.intersect_start);
/* Localize intersection top-left corner to slice*/
local_x = (x_iter.intersect_start -
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
x_iter.pos);
local_y = (y_iter.intersect_start -
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
y_iter.pos);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
slice_num = y_iter.index * tex->slice_x_spans->len + x_iter.index;
/* Pick slice GL handle */
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
gl_handle = g_array_index (tex->slice_gl_handles, GLuint, slice_num);
/* Setup gl alignment to match rowstride and top-left corner */
prep_for_gl_pixels_upload (source_bmp->rowstride,
source_x,
source_y,
bpp);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Keep a copy of the first pixel if needed */
if (tex->first_pixels && local_x == 0 && local_y == 0)
{
memcpy (tex->first_pixels[slice_num].data,
source_bmp->data + source_x * bpp
+ source_y * source_bmp->rowstride,
bpp);
tex->first_pixels[slice_num].gl_format = source_gl_format;
tex->first_pixels[slice_num].gl_type = source_gl_type;
}
/* Upload new image data */
GE( glBindTexture (tex->gl_target, gl_handle) );
GE( glTexSubImage2D (tex->gl_target, 0,
local_x, local_y,
inter_w, inter_h,
source_gl_format,
source_gl_type,
source_bmp->data) );
/* If the x_span is sliced and the upload touches the
rightmost pixels then fill the waste with copies of the
pixels */
if (x_span->waste > 0
&& local_x < x_span->size - x_span->waste
&& local_x + inter_w >= x_span->size - x_span->waste)
{
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
const guchar *src;
guchar *dst;
guint wx, wy;
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
src = source_bmp->data
+ (src_y + ((int)y_iter.intersect_start)
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
- dst_y)
* source_bmp->rowstride
+ (src_x + x_span->start + x_span->size - x_span->waste
- dst_x - 1)
* bpp;
dst = waste_buf;
for (wy = 0; wy < inter_h; wy++)
{
for (wx = 0; wx < x_span->waste; wx++)
{
memcpy (dst, src, bpp);
dst += bpp;
}
src += source_bmp->rowstride;
}
prep_for_gl_pixels_upload (x_span->waste * bpp,
0, /* src x */
0, /* src y */
bpp);
GE( glTexSubImage2D (tex->gl_target, 0,
x_span->size - x_span->waste,
local_y,
x_span->waste,
inter_h,
source_gl_format,
source_gl_type,
waste_buf) );
}
/* same for the bottom-most pixels */
if (y_span->waste > 0
&& local_y < y_span->size - y_span->waste
&& local_y + inter_h >= y_span->size - y_span->waste)
{
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
const guchar *src;
guchar *dst;
guint wy, wx;
guint copy_width;
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
src = source_bmp->data
+ (src_x + ((int)x_iter.intersect_start)
2008-10-30 Emmanuele Bassi <ebassi@linux.intel.com> Bug 1209 - Move fixed point API in COGL * clutter/cogl/cogl-fixed.h: * clutter/cogl/cogl.h.in: * clutter/cogl/common/Makefile.am: * clutter/cogl/common/cogl-fixed.c: Add fixed point API, modelled after the ClutterFixed. The CoglFixed API supercedes the ClutterFixed one and avoids the dependency of COGL on Clutter's own API. * clutter/cogl/common/cogl-clip-stack.c: * clutter/cogl/common/cogl-primitives.c: * clutter/cogl/common/cogl-primitives.h: Update internal usage of ClutterFixed to CoglFixed. * clutter/cogl/gl/Makefile.am: * clutter/cogl/gl/cogl-primitives.c: * clutter/cogl/gl/cogl-texture.c: * clutter/cogl/gl/cogl.c: Ditto, in the GL implementation of the COGL API. * clutter/cogl/gles/Makefile.am: * clutter/cogl/gles/cogl-fbo.c: * clutter/cogl/gles/cogl-gles2-wrapper.c: * clutter/cogl/gles/cogl-primitives.c: * clutter/cogl/gles/cogl-texture.c: * clutter/cogl/gles/cogl.c: Ditto, in the GLES implementation of the COGL API. * clutter/pango/pangoclutter-glyph-cache.c: * clutter/pango/pangoclutter-glyph-cache.h: Ditto, in the Pango renderer glyphs cache. * clutter/clutter-fixed.c: * clutter/clutter-fixed.h: ClutterFixed and related API becomes a simple transition API for bindings and public Clutter API. * clutter/clutter-actor.c: * clutter/clutter-alpha.c: * clutter/clutter-backend.c: * clutter/clutter-behaviour-depth.c: * clutter/clutter-behaviour-ellipse.c: * clutter/clutter-behaviour-path.c: * clutter/clutter-behaviour-rotate.c: * clutter/clutter-behaviour-scale.c: * clutter/clutter-clone-texture.c: * clutter/clutter-color.c: * clutter/clutter-entry.c: * clutter/clutter-stage.c: * clutter/clutter-texture.c: * clutter/clutter-timeline.c: * clutter/clutter-units.h: Move from the internal usage of ClutterFixed to CoglFixed. * doc/reference/clutter/clutter-sections.txt: * doc/reference/cogl/cogl-docs.sgml: * doc/reference/cogl/cogl-sections.txt: Update the documentation. * tests/test-cogl-tex-tile.c: * tests/test-project.c: Fix tests after the API change * README: Add release notes.
2008-10-30 16:37:55 +00:00
- dst_x)
* bpp
+ (src_y + y_span->start + y_span->size - y_span->waste
- dst_y - 1)
* source_bmp->rowstride;
dst = waste_buf;
if (local_x + inter_w >= x_span->size - x_span->waste)
copy_width = x_span->size - local_x;
else
copy_width = inter_w;
for (wy = 0; wy < y_span->waste; wy++)
{
memcpy (dst, src, inter_w * bpp);
dst += inter_w * bpp;
for (wx = inter_w; wx < copy_width; wx++)
{
memcpy (dst, dst - bpp, bpp);
dst += bpp;
}
}
prep_for_gl_pixels_upload (copy_width * bpp,
0, /* src x */
0, /* src y */
bpp);
GE( glTexSubImage2D (tex->gl_target, 0,
local_x,
y_span->size - y_span->waste,
copy_width,
y_span->waste,
source_gl_format,
source_gl_type,
waste_buf) );
}
}
}
if (waste_buf)
g_free (waste_buf);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->mipmaps_dirty = TRUE;
return TRUE;
}
static gint
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
_cogl_rect_slices_for_size (gint size_to_fill,
gint max_span_size,
gint max_waste,
GArray *out_spans)
{
gint n_spans = 0;
CoglTexSliceSpan span;
/* Init first slice span */
span.start = 0;
span.size = max_span_size;
span.waste = 0;
/* Repeat until whole area covered */
while (size_to_fill >= span.size)
{
/* Add another slice span of same size */
if (out_spans) g_array_append_val (out_spans, span);
span.start += span.size;
size_to_fill -= span.size;
n_spans++;
}
/* Add one last smaller slice span */
if (size_to_fill > 0)
{
span.size = size_to_fill;
if (out_spans) g_array_append_val (out_spans, span);
n_spans++;
}
return n_spans;
}
static gint
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
_cogl_pot_slices_for_size (gint size_to_fill,
gint max_span_size,
gint max_waste,
GArray *out_spans)
{
gint n_spans = 0;
CoglTexSliceSpan span;
/* Init first slice span */
span.start = 0;
span.size = max_span_size;
span.waste = 0;
/* Fix invalid max_waste */
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
if (max_waste < 0)
max_waste = 0;
while (TRUE)
{
/* Is the whole area covered? */
if (size_to_fill > span.size)
{
/* Not yet - add a span of this size */
if (out_spans) g_array_append_val (out_spans, span);
span.start += span.size;
size_to_fill -= span.size;
n_spans++;
}
else if (span.size - size_to_fill <= max_waste)
{
/* Yes and waste is small enough */
span.waste = span.size - size_to_fill;
if (out_spans) g_array_append_val (out_spans, span);
return ++n_spans;
}
else
{
/* Yes but waste is too large */
while (span.size - size_to_fill > max_waste)
{
span.size /= 2;
g_assert (span.size > 0);
}
}
}
/* Can't get here */
return 0;
}
static gboolean
_cogl_texture_size_supported (GLenum gl_target,
GLenum gl_format,
GLenum gl_type,
int width,
int height)
{
if (gl_target == GL_TEXTURE_2D)
{
/* Proxy texture allows for a quick check for supported size */
GLint new_width = 0;
GE( glTexImage2D (GL_PROXY_TEXTURE_2D, 0, GL_RGBA,
width, height, 0 /* border */,
gl_format, gl_type, NULL) );
GE( glGetTexLevelParameteriv (GL_PROXY_TEXTURE_2D, 0,
GL_TEXTURE_WIDTH, &new_width) );
return new_width != 0;
}
else
{
/* not used */
return 0;
}
}
void
_cogl_texture_set_wrap_mode_parameter (CoglTexture *tex,
GLenum wrap_mode)
{
/* Only set the wrap mode if it's different from the current
value to avoid too many GL calls */
if (tex->wrap_mode != wrap_mode)
{
int i;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
/* Any queued texture rectangles may be depending on the previous
* wrap mode... */
_cogl_journal_flush ();
for (i = 0; i < tex->slice_gl_handles->len; i++)
{
GLuint texnum = g_array_index (tex->slice_gl_handles, GLuint, i);
GE( glBindTexture (tex->gl_target, texnum) );
GE( glTexParameteri (tex->gl_target, GL_TEXTURE_WRAP_S, wrap_mode) );
GE( glTexParameteri (tex->gl_target, GL_TEXTURE_WRAP_T, wrap_mode) );
}
tex->wrap_mode = wrap_mode;
}
}
static gboolean
_cogl_texture_slices_create (CoglTexture *tex)
{
gint bpp;
gint max_width;
gint max_height;
GLuint *gl_handles;
gint n_x_slices;
gint n_y_slices;
gint n_slices;
gint x, y;
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
const GLfloat transparent_color[4] = { 0x00, 0x00, 0x00, 0x00 };
gint (*slices_for_size) (gint, gint, gint, GArray*);
bpp = _cogl_get_format_bpp (tex->bitmap.format);
/* Initialize size of largest slice according to supported features */
if (cogl_features_available (COGL_FEATURE_TEXTURE_NPOT))
{
max_width = tex->bitmap.width;
max_height = tex->bitmap.height;
tex->gl_target = GL_TEXTURE_2D;
slices_for_size = _cogl_rect_slices_for_size;
}
else
{
max_width = cogl_util_next_p2 (tex->bitmap.width);
max_height = cogl_util_next_p2 (tex->bitmap.height);
tex->gl_target = GL_TEXTURE_2D;
slices_for_size = _cogl_pot_slices_for_size;
}
/* Negative number means no slicing forced by the user */
if (tex->max_waste <= -1)
{
CoglTexSliceSpan span;
/* Check if size supported else bail out */
if (!_cogl_texture_size_supported (tex->gl_target,
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
tex->gl_format,
tex->gl_type,
max_width,
max_height))
{
return FALSE;
}
n_x_slices = 1;
n_y_slices = 1;
/* Init span arrays */
tex->slice_x_spans = g_array_sized_new (FALSE, FALSE,
sizeof (CoglTexSliceSpan),
1);
tex->slice_y_spans = g_array_sized_new (FALSE, FALSE,
sizeof (CoglTexSliceSpan),
1);
/* Add a single span for width and height */
span.start = 0;
span.size = max_width;
span.waste = max_width - tex->bitmap.width;
g_array_append_val (tex->slice_x_spans, span);
span.size = max_height;
span.waste = max_height - tex->bitmap.height;
g_array_append_val (tex->slice_y_spans, span);
}
else
{
/* Decrease the size of largest slice until supported by GL */
while (!_cogl_texture_size_supported (tex->gl_target,
tex->gl_format,
tex->gl_type,
max_width,
max_height))
{
/* Alternate between width and height */
if (max_width > max_height)
max_width /= 2;
else
max_height /= 2;
if (max_width == 0 || max_height == 0)
return FALSE;
}
/* Determine the slices required to cover the bitmap area */
n_x_slices = slices_for_size (tex->bitmap.width,
max_width, tex->max_waste,
NULL);
n_y_slices = slices_for_size (tex->bitmap.height,
max_height, tex->max_waste,
NULL);
/* Init span arrays with reserved size */
tex->slice_x_spans = g_array_sized_new (FALSE, FALSE,
sizeof (CoglTexSliceSpan),
n_x_slices);
tex->slice_y_spans = g_array_sized_new (FALSE, FALSE,
sizeof (CoglTexSliceSpan),
n_y_slices);
/* Fill span arrays with info */
slices_for_size (tex->bitmap.width,
max_width, tex->max_waste,
tex->slice_x_spans);
slices_for_size (tex->bitmap.height,
max_height, tex->max_waste,
tex->slice_y_spans);
}
/* Init and resize GL handle array */
n_slices = n_x_slices * n_y_slices;
tex->slice_gl_handles = g_array_sized_new (FALSE, FALSE,
sizeof (GLuint),
n_slices);
g_array_set_size (tex->slice_gl_handles, n_slices);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Allocate some space to store a copy of the first pixel of each
slice. This is only needed to glGenerateMipmap (which is part of
the FBO extension) is not available */
if (cogl_features_available (COGL_FEATURE_OFFSCREEN))
tex->first_pixels = NULL;
else
tex->first_pixels = g_new (CoglTexturePixel, n_slices);
/* Wrap mode not yet set */
tex->wrap_mode = GL_FALSE;
/* Generate a "working set" of GL texture objects
* (some implementations might supported faster
* re-binding between textures inside a set) */
gl_handles = (GLuint*) tex->slice_gl_handles->data;
GE( glGenTextures (n_slices, gl_handles) );
/* Init each GL texture object */
for (y = 0; y < n_y_slices; ++y)
{
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, y);
for (x = 0; x < n_x_slices; ++x)
{
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, x);
COGL_NOTE (TEXTURE, "CREATE SLICE (%d,%d)\tsize (%d,%d)",
x, y,
x_span->size - x_span->waste,
y_span->size - y_span->waste);
/* Setup texture parameters */
GE( glBindTexture (tex->gl_target,
gl_handles[y * n_x_slices + x]) );
/* Use a transparent border color so that we can leave the
color buffer alone when using texture co-ordinates
outside of the texture */
GE( glTexParameterfv (tex->gl_target, GL_TEXTURE_BORDER_COLOR,
transparent_color) );
/* Pass NULL data to init size and internal format */
GE( glTexImage2D (tex->gl_target, 0, tex->gl_intformat,
x_span->size, y_span->size, 0,
tex->gl_format, tex->gl_type, 0) );
}
}
return TRUE;
}
static void
_cogl_texture_slices_free (CoglTexture *tex)
{
if (tex->slice_x_spans != NULL)
g_array_free (tex->slice_x_spans, TRUE);
if (tex->slice_y_spans != NULL)
g_array_free (tex->slice_y_spans, TRUE);
if (tex->slice_gl_handles != NULL)
{
if (tex->is_foreign == FALSE)
{
GE( glDeleteTextures (tex->slice_gl_handles->len,
(GLuint*) tex->slice_gl_handles->data) );
}
g_array_free (tex->slice_gl_handles, TRUE);
}
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
if (tex->first_pixels != NULL)
g_free (tex->first_pixels);
}
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
gboolean
_cogl_texture_span_has_waste (CoglTexture *tex,
gint x_span_index,
gint y_span_index)
{
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, x_span_index);
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, y_span_index);
return (x_span->waste || y_span->waste) ? TRUE : FALSE;
}
static gboolean
_cogl_pixel_format_from_gl_internal (GLenum gl_int_format,
CoglPixelFormat *out_format)
{
/* It doesn't really matter we convert to exact same
format (some have no cogl match anyway) since format
is re-matched against cogl when getting or setting
texture image data.
*/
switch (gl_int_format)
{
case GL_ALPHA: case GL_ALPHA4: case GL_ALPHA8:
case GL_ALPHA12: case GL_ALPHA16:
*out_format = COGL_PIXEL_FORMAT_A_8;
return TRUE;
case GL_LUMINANCE: case GL_LUMINANCE4: case GL_LUMINANCE8:
case GL_LUMINANCE12: case GL_LUMINANCE16:
*out_format = COGL_PIXEL_FORMAT_G_8;
return TRUE;
case GL_RGB: case GL_RGB4: case GL_RGB5: case GL_RGB8:
case GL_RGB10: case GL_RGB12: case GL_RGB16: case GL_R3_G3_B2:
*out_format = COGL_PIXEL_FORMAT_RGB_888;
return TRUE;
case GL_RGBA: case GL_RGBA2: case GL_RGBA4: case GL_RGB5_A1:
case GL_RGBA8: case GL_RGB10_A2: case GL_RGBA12: case GL_RGBA16:
*out_format = COGL_PIXEL_FORMAT_RGBA_8888;
return TRUE;
}
return FALSE;
}
static CoglPixelFormat
_cogl_pixel_format_to_gl (CoglPixelFormat format,
GLenum *out_glintformat,
GLenum *out_glformat,
GLenum *out_gltype)
{
CoglPixelFormat required_format;
GLenum glintformat = 0;
GLenum glformat = 0;
GLenum gltype = 0;
/* FIXME: check YUV support */
required_format = format;
/* Find GL equivalents */
switch (format & COGL_UNPREMULT_MASK)
{
case COGL_PIXEL_FORMAT_A_8:
glintformat = GL_ALPHA;
glformat = GL_ALPHA;
gltype = GL_UNSIGNED_BYTE;
break;
case COGL_PIXEL_FORMAT_G_8:
glintformat = GL_LUMINANCE;
glformat = GL_LUMINANCE;
gltype = GL_UNSIGNED_BYTE;
break;
case COGL_PIXEL_FORMAT_RGB_888:
glintformat = GL_RGB;
glformat = GL_RGB;
gltype = GL_UNSIGNED_BYTE;
break;
case COGL_PIXEL_FORMAT_BGR_888:
glintformat = GL_RGB;
glformat = GL_BGR;
gltype = GL_UNSIGNED_BYTE;
break;
case COGL_PIXEL_FORMAT_RGBA_8888:
glintformat = GL_RGBA;
glformat = GL_RGBA;
gltype = GL_UNSIGNED_BYTE;
break;
case COGL_PIXEL_FORMAT_BGRA_8888:
glintformat = GL_RGBA;
glformat = GL_BGRA;
gltype = GL_UNSIGNED_BYTE;
break;
/* The following two types of channel ordering
* have no GL equivalent unless defined using
* system word byte ordering */
case COGL_PIXEL_FORMAT_ARGB_8888:
glintformat = GL_RGBA;
glformat = GL_BGRA;
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
gltype = GL_UNSIGNED_INT_8_8_8_8;
#else
gltype = GL_UNSIGNED_INT_8_8_8_8_REV;
#endif
break;
case COGL_PIXEL_FORMAT_ABGR_8888:
glintformat = GL_RGBA;
glformat = GL_RGBA;
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
gltype = GL_UNSIGNED_INT_8_8_8_8;
#else
gltype = GL_UNSIGNED_INT_8_8_8_8_REV;
#endif
break;
/* The following three types of channel ordering
* are always defined using system word byte
* ordering (even according to GLES spec) */
case COGL_PIXEL_FORMAT_RGB_565:
glintformat = GL_RGB;
glformat = GL_RGB;
gltype = GL_UNSIGNED_SHORT_5_6_5;
break;
case COGL_PIXEL_FORMAT_RGBA_4444:
glintformat = GL_RGBA;
glformat = GL_RGBA;
gltype = GL_UNSIGNED_SHORT_4_4_4_4;
break;
case COGL_PIXEL_FORMAT_RGBA_5551:
glintformat = GL_RGBA;
glformat = GL_RGBA;
gltype = GL_UNSIGNED_SHORT_5_5_5_1;
break;
/* FIXME: check extensions for YUV support */
default:
break;
}
if (out_glintformat != NULL)
*out_glintformat = glintformat;
if (out_glformat != NULL)
*out_glformat = glformat;
if (out_gltype != NULL)
*out_gltype = gltype;
return required_format;
}
static gboolean
_cogl_texture_bitmap_prepare (CoglTexture *tex,
CoglPixelFormat internal_format)
{
CoglBitmap new_bitmap;
CoglPixelFormat new_data_format;
gboolean success;
/* Was there any internal conversion requested?
* By default Cogl will use a premultiplied internal format. Later we will
* add control over this. */
if (internal_format == COGL_PIXEL_FORMAT_ANY)
{
if ((tex->bitmap.format & COGL_A_BIT) &&
tex->bitmap.format != COGL_PIXEL_FORMAT_A_8)
internal_format = tex->bitmap.format | COGL_PREMULT_BIT;
}
/* Find closest format accepted by GL */
new_data_format = _cogl_pixel_format_to_gl (internal_format,
&tex->gl_intformat,
&tex->gl_format,
&tex->gl_type);
/* Convert to internal format */
if (new_data_format != tex->bitmap.format)
{
success = _cogl_bitmap_convert_and_premult (&tex->bitmap,
&new_bitmap,
new_data_format);
if (!success)
return FALSE;
/* Update texture with new data */
_cogl_texture_bitmap_swap (tex, &new_bitmap);
}
return TRUE;
}
static void
_cogl_texture_free (CoglTexture *tex)
{
/* Frees texture resources but its handle is not
released! Do that separately before this! */
_cogl_texture_bitmap_free (tex);
_cogl_texture_slices_free (tex);
g_free (tex);
}
CoglHandle
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
cogl_texture_new_with_size (guint width,
guint height,
CoglTextureFlags flags,
CoglPixelFormat internal_format)
{
CoglTexture *tex;
gint bpp;
gint rowstride;
/* Since no data, we need some internal format */
if (internal_format == COGL_PIXEL_FORMAT_ANY)
return COGL_INVALID_HANDLE;
/* Rowstride from width */
bpp = _cogl_get_format_bpp (internal_format);
rowstride = width * bpp;
/* Init texture with empty bitmap */
tex = (CoglTexture*) g_malloc (sizeof (CoglTexture));
tex->is_foreign = FALSE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->auto_mipmap = (flags & COGL_TEXTURE_NO_AUTO_MIPMAP) == 0;
tex->mipmaps_dirty = TRUE;
tex->first_pixels = NULL;
tex->bitmap.width = width;
tex->bitmap.height = height;
tex->bitmap.format = internal_format;
tex->bitmap.rowstride = rowstride;
tex->bitmap.data = NULL;
tex->bitmap_owner = FALSE;
tex->slice_x_spans = NULL;
tex->slice_y_spans = NULL;
tex->slice_gl_handles = NULL;
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
if (flags & COGL_TEXTURE_NO_SLICING)
tex->max_waste = -1;
else
tex->max_waste = COGL_TEXTURE_MAX_WASTE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Unknown filter */
tex->min_filter = GL_FALSE;
tex->mag_filter = GL_FALSE;
/* Find closest GL format match */
tex->bitmap.format =
_cogl_pixel_format_to_gl (internal_format,
&tex->gl_intformat,
&tex->gl_format,
&tex->gl_type);
/* Create slices for the given format and size */
if (!_cogl_texture_slices_create (tex))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
return _cogl_texture_handle_new (tex);
}
CoglHandle
cogl_texture_new_from_data (guint width,
guint height,
CoglTextureFlags flags,
CoglPixelFormat format,
CoglPixelFormat internal_format,
guint rowstride,
const guchar *data)
{
CoglTexture *tex;
gint bpp;
if (format == COGL_PIXEL_FORMAT_ANY)
return COGL_INVALID_HANDLE;
if (data == NULL)
return COGL_INVALID_HANDLE;
/* Rowstride from width if not given */
bpp = _cogl_get_format_bpp (format);
if (rowstride == 0) rowstride = width * bpp;
/* Create new texture and fill with given data */
tex = (CoglTexture*) g_malloc (sizeof (CoglTexture));
tex->is_foreign = FALSE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->auto_mipmap = (flags & COGL_TEXTURE_NO_AUTO_MIPMAP) == 0;
tex->mipmaps_dirty = TRUE;
tex->first_pixels = NULL;
tex->bitmap.width = width;
tex->bitmap.height = height;
tex->bitmap.data = (guchar*)data;
tex->bitmap.format = format;
tex->bitmap.rowstride = rowstride;
tex->bitmap_owner = FALSE;
tex->slice_x_spans = NULL;
tex->slice_y_spans = NULL;
tex->slice_gl_handles = NULL;
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
if (flags & COGL_TEXTURE_NO_SLICING)
tex->max_waste = -1;
else
tex->max_waste = COGL_TEXTURE_MAX_WASTE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Unknown filter */
tex->min_filter = GL_FALSE;
tex->mag_filter = GL_FALSE;
/* FIXME: If upload fails we should set some kind of
* error flag but still return texture handle (this
* is to keep the behavior equal to _new_from_file;
* see below) */
if (!_cogl_texture_bitmap_prepare (tex, internal_format))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
if (!_cogl_texture_slices_create (tex))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
if (!_cogl_texture_upload_to_gl (tex))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
_cogl_texture_bitmap_free (tex);
return _cogl_texture_handle_new (tex);
}
CoglHandle
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
cogl_texture_new_from_bitmap (CoglHandle bmp_handle,
CoglTextureFlags flags,
CoglPixelFormat internal_format)
{
CoglTexture *tex;
CoglBitmap *bmp = (CoglBitmap *)bmp_handle;
g_return_val_if_fail (bmp_handle != COGL_INVALID_HANDLE, COGL_INVALID_HANDLE);
/* Create new texture and fill with loaded data */
tex = (CoglTexture*) g_malloc ( sizeof (CoglTexture));
tex->is_foreign = FALSE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->auto_mipmap = (flags & COGL_TEXTURE_NO_AUTO_MIPMAP) == 0;
tex->mipmaps_dirty = TRUE;
tex->first_pixels = NULL;
tex->bitmap = *bmp;
tex->bitmap_owner = FALSE;
tex->slice_x_spans = NULL;
tex->slice_y_spans = NULL;
tex->slice_gl_handles = NULL;
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
if (flags & COGL_TEXTURE_NO_SLICING)
tex->max_waste = -1;
else
tex->max_waste = COGL_TEXTURE_MAX_WASTE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Unknown filter */
tex->min_filter = GL_FALSE;
tex->mag_filter = GL_FALSE;
/* FIXME: If upload fails we should set some kind of
* error flag but still return texture handle if the
* user decides to destroy another texture and upload
* this one instead (reloading from file is not needed
* in that case). As a rule then, everytime a valid
* CoglHandle is returned, it should also be destroyed
* with cogl_handle_unref at some point! */
if (!_cogl_texture_bitmap_prepare (tex, internal_format))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
if (!_cogl_texture_slices_create (tex))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
if (!_cogl_texture_upload_to_gl (tex))
{
_cogl_texture_free (tex);
return COGL_INVALID_HANDLE;
}
_cogl_texture_bitmap_free (tex);
return _cogl_texture_handle_new (tex);
}
CoglHandle
cogl_texture_new_from_file (const gchar *filename,
CoglTextureFlags flags,
CoglPixelFormat internal_format,
GError **error)
{
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
CoglHandle bmp;
CoglHandle handle;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
g_return_val_if_fail (error == NULL || *error == NULL, COGL_INVALID_HANDLE);
bmp = cogl_bitmap_new_from_file (filename, error);
if (bmp == COGL_INVALID_HANDLE)
return COGL_INVALID_HANDLE;
Fully integrates CoglMaterial throughout the rest of Cogl This glues CoglMaterial in as the fundamental way that Cogl describes how to fill in geometry. It adds cogl_set_source (), which is used to set the material which will be used by all subsequent drawing functions It adds cogl_set_source_texture as a convenience for setting up a default material with a single texture layer, and cogl_set_source_color is now also a convenience for setting up a material with a solid fill. "drawing functions" include, cogl_rectangle, cogl_texture_rectangle, cogl_texture_multiple_rectangles, cogl_texture_polygon (though the cogl_texture_* funcs have been renamed; see below for details), cogl_path_fill/stroke and cogl_vertex_buffer_draw*. cogl_texture_rectangle, cogl_texture_multiple_rectangles and cogl_texture_polygon no longer take a texture handle; instead the current source material is referenced. The functions have also been renamed to: cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords and cogl_polygon respectivly. Most code that previously did: cogl_texture_rectangle (tex_handle, x, y,...); needs to be changed to now do: cogl_set_source_texture (tex_handle); cogl_rectangle_with_texture_coords (x, y,....); In the less likely case where you were blending your source texture with a color like: cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */ cogl_texture_rectangle (tex_handle, x, y,...); you will need your own material to do that: mat = cogl_material_new (); cogl_material_set_color4ub (r,g,b,a); cogl_material_set_layer (mat, 0, tex_handle)); cogl_set_source_material (mat); Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use cog_rectangle_with_texure_coords since these are the coordinates that cogl_rectangle will use. For cogl_texture_polygon; as well as dropping the texture handle, the n_vertices and vertices arguments were transposed for consistency. So code previously written as: cogl_texture_polygon (tex_handle, 3, verts, TRUE); need to be written as: cogl_set_source_texture (tex_handle); cogl_polygon (verts, 3, TRUE); All of the unit tests have been updated to now use the material API and test-cogl-material has been renamed to test-cogl-multitexture since any textured quad is now technically a test of CoglMaterial but this test specifically creates a material with multiple texture layers. Note: The GLES backend has not been updated yet; that will be done in a following commit.
2009-01-23 16:15:40 +00:00
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
handle = cogl_texture_new_from_bitmap (bmp, flags, internal_format);
cogl_handle_unref (bmp);
return handle;
}
CoglHandle
cogl_texture_new_from_foreign (GLuint gl_handle,
GLenum gl_target,
GLuint width,
GLuint height,
GLuint x_pot_waste,
GLuint y_pot_waste,
CoglPixelFormat format)
{
/* NOTE: width, height and internal format are not queriable
in GLES, hence such a function prototype. However, for
OpenGL they are still queried from the texture for improved
robustness and for completeness in case one day GLES gains
support for them.
*/
GLenum gl_error = 0;
GLboolean gl_istexture;
GLint gl_compressed = GL_FALSE;
GLint gl_int_format = 0;
GLint gl_width = 0;
GLint gl_height = 0;
GLint gl_gen_mipmap;
guint bpp;
CoglTexture *tex;
CoglTexSliceSpan x_span;
CoglTexSliceSpan y_span;
/* GL_ARB_texture_rectangle textures are supported if they are
created from foreign because some chipsets have trouble with
GL_ARB_texture_non_power_of_two. There is no Cogl call to create
them directly to emphasize the fact that they don't work fully
(for example, no mipmapping and complicated shader support) */
/* Allow 2-dimensional or rectangle textures only */
if (gl_target != GL_TEXTURE_2D && gl_target != CGL_TEXTURE_RECTANGLE_ARB)
return COGL_INVALID_HANDLE;
/* Make sure it is a valid GL texture object */
gl_istexture = glIsTexture (gl_handle);
if (gl_istexture == GL_FALSE)
return COGL_INVALID_HANDLE;
/* Make sure binding succeeds */
gl_error = glGetError ();
glBindTexture (gl_target, gl_handle);
if (glGetError () != GL_NO_ERROR)
return COGL_INVALID_HANDLE;
/* Obtain texture parameters
(only level 0 we are interested in) */
GE( glGetTexLevelParameteriv (gl_target, 0,
GL_TEXTURE_COMPRESSED,
&gl_compressed) );
GE( glGetTexLevelParameteriv (gl_target, 0,
GL_TEXTURE_INTERNAL_FORMAT,
&gl_int_format) );
GE( glGetTexLevelParameteriv (gl_target, 0,
GL_TEXTURE_WIDTH,
&gl_width) );
GE( glGetTexLevelParameteriv (gl_target, 0,
GL_TEXTURE_HEIGHT,
&gl_height) );
GE( glGetTexParameteriv (gl_target,
GL_GENERATE_MIPMAP,
&gl_gen_mipmap) );
/* Validate width and height */
if (gl_width <= 0 || gl_height <= 0)
return COGL_INVALID_HANDLE;
/* Validate pot waste */
if (x_pot_waste < 0 || x_pot_waste >= gl_width ||
y_pot_waste < 0 || y_pot_waste >= gl_height)
return COGL_INVALID_HANDLE;
/* Compressed texture images not supported */
if (gl_compressed == GL_TRUE)
return COGL_INVALID_HANDLE;
/* Try and match to a cogl format */
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
if (!_cogl_pixel_format_from_gl_internal (gl_int_format, &format))
return COGL_INVALID_HANDLE;
/* Create new texture */
[cogl] Remove max_waste argument from Texture ctors The CoglTexture constructors expose the "max-waste" argument for controlling the maximum amount of wasted areas for slicing or, if set to -1, disables slicing. Slicing is really relevant only for large images that are never repeated, so it's a useful feature only in controlled use cases. Specifying the amount of wasted area is, on the other hand, just a way to mess up this feature; 99% the times, you either pull this number out of thin air, hoping it's right, or you try to do the right thing and you choose the wrong number anyway. Instead, we can use the CoglTextureFlags to control whether the texture should not be sliced (useful for Clutter-GST and for the texture-from-pixmap actors) and provide a reasonable value for enabling the slicing ourself. At some point, we might even provide a way to change the default at compile time or at run time, for particular platforms. Since max_waste is gone, the :tile-waste property of ClutterTexture becomes read-only, and it proxies the cogl_texture_get_max_waste() function. Inside Clutter, the only cases where the max_waste argument was not set to -1 are in the Pango glyph cache (which is a POT texture anyway) and inside the test cases where we want to force slicing; for the latter we can create larger textures that will be bigger than the threshold we set. Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com> Signed-off-by: Robert Bragg <robert@linux.intel.com> Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 18:18:18 +00:00
tex = (CoglTexture *) g_malloc (sizeof (CoglTexture));
/* Setup bitmap info */
tex->is_foreign = TRUE;
tex->auto_mipmap = (gl_gen_mipmap == GL_TRUE) ? TRUE : FALSE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->mipmaps_dirty = TRUE;
tex->first_pixels = NULL;
bpp = _cogl_get_format_bpp (format);
tex->bitmap.format = format;
tex->bitmap.width = gl_width - x_pot_waste;
tex->bitmap.height = gl_height - y_pot_waste;
tex->bitmap.rowstride = tex->bitmap.width * bpp;
tex->bitmap_owner = FALSE;
tex->gl_target = gl_target;
tex->gl_intformat = gl_int_format;
tex->gl_format = gl_int_format;
tex->gl_type = GL_UNSIGNED_BYTE;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Unknown filter */
tex->min_filter = GL_FALSE;
tex->mag_filter = GL_FALSE;
tex->max_waste = 0;
/* Wrap mode not yet set */
tex->wrap_mode = GL_FALSE;
/* Create slice arrays */
tex->slice_x_spans =
g_array_sized_new (FALSE, FALSE,
sizeof (CoglTexSliceSpan), 1);
tex->slice_y_spans =
g_array_sized_new (FALSE, FALSE,
sizeof (CoglTexSliceSpan), 1);
tex->slice_gl_handles =
g_array_sized_new (FALSE, FALSE,
sizeof (GLuint), 1);
/* Store info for a single slice */
x_span.start = 0;
x_span.size = gl_width;
x_span.waste = x_pot_waste;
g_array_append_val (tex->slice_x_spans, x_span);
y_span.start = 0;
y_span.size = gl_height;
y_span.waste = y_pot_waste;
g_array_append_val (tex->slice_y_spans, y_span);
g_array_append_val (tex->slice_gl_handles, gl_handle);
tex->first_pixels = NULL;
return _cogl_texture_handle_new (tex);
}
guint
cogl_texture_get_width (CoglHandle handle)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return 0;
tex = _cogl_texture_pointer_from_handle (handle);
return tex->bitmap.width;
}
guint
cogl_texture_get_height (CoglHandle handle)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return 0;
tex = _cogl_texture_pointer_from_handle (handle);
return tex->bitmap.height;
}
CoglPixelFormat
cogl_texture_get_format (CoglHandle handle)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return COGL_PIXEL_FORMAT_ANY;
tex = _cogl_texture_pointer_from_handle (handle);
return tex->bitmap.format;
}
guint
cogl_texture_get_rowstride (CoglHandle handle)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return 0;
tex = _cogl_texture_pointer_from_handle (handle);
return tex->bitmap.rowstride;
}
gint
cogl_texture_get_max_waste (CoglHandle handle)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return 0;
tex = _cogl_texture_pointer_from_handle (handle);
return tex->max_waste;
}
gboolean
cogl_texture_is_sliced (CoglHandle handle)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return FALSE;
tex = _cogl_texture_pointer_from_handle (handle);
if (tex->slice_gl_handles == NULL)
return FALSE;
if (tex->slice_gl_handles->len <= 1)
return FALSE;
return TRUE;
}
gboolean
cogl_texture_get_gl_texture (CoglHandle handle,
GLuint *out_gl_handle,
GLenum *out_gl_target)
{
CoglTexture *tex;
if (!cogl_is_texture (handle))
return FALSE;
tex = _cogl_texture_pointer_from_handle (handle);
if (tex->slice_gl_handles == NULL)
return FALSE;
if (tex->slice_gl_handles->len < 1)
return FALSE;
if (out_gl_handle != NULL)
*out_gl_handle = g_array_index (tex->slice_gl_handles, GLuint, 0);
if (out_gl_target != NULL)
*out_gl_target = tex->gl_target;
return TRUE;
}
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
void
_cogl_texture_set_filters (CoglHandle handle,
GLenum min_filter,
GLenum mag_filter)
{
CoglTexture *tex;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
GLuint gl_handle;
int i;
if (!cogl_is_texture (handle))
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
return;
tex = _cogl_texture_pointer_from_handle (handle);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Make sure slices were created */
if (tex->slice_gl_handles == NULL)
return;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
if (min_filter == tex->min_filter
&& mag_filter == tex->mag_filter)
return;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Store new values */
tex->min_filter = min_filter;
tex->mag_filter = mag_filter;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Apply new filters to every slice */
for (i=0; i<tex->slice_gl_handles->len; ++i)
{
gl_handle = g_array_index (tex->slice_gl_handles, GLuint, i);
GE( glBindTexture (tex->gl_target, gl_handle) );
GE( glTexParameteri (tex->gl_target, GL_TEXTURE_MAG_FILTER,
tex->mag_filter) );
GE( glTexParameteri (tex->gl_target, GL_TEXTURE_MIN_FILTER,
tex->min_filter) );
}
}
void
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
_cogl_texture_ensure_mipmaps (CoglHandle handle)
{
CoglTexture *tex;
int i;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (!cogl_is_texture (handle))
return;
tex = _cogl_texture_pointer_from_handle (handle);
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Only update if the mipmaps are dirty */
if (!tex->auto_mipmap || !tex->mipmaps_dirty)
return;
/* Make sure slices were created */
if (tex->slice_gl_handles == NULL)
return;
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* Regenerate the mipmaps on every slice */
for (i = 0; i < tex->slice_gl_handles->len; i++)
{
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
GLuint gl_handle = g_array_index (tex->slice_gl_handles, GLuint, i);
GE( glBindTexture (tex->gl_target, gl_handle) );
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
/* glGenerateMipmap is defined in the FBO extension */
if (cogl_features_available (COGL_FEATURE_OFFSCREEN))
GE( glGenerateMipmap (tex->gl_target) );
else if (tex->first_pixels)
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
{
CoglTexturePixel *pixel = tex->first_pixels + i;
/* Temporarily enable automatic mipmap generation and
re-upload the first pixel to cause a regeneration */
GE( glTexParameteri (tex->gl_target, GL_GENERATE_MIPMAP, GL_TRUE) );
GE( glTexSubImage2D (tex->gl_target, 0, 0, 0, 1, 1,
pixel->gl_format, pixel->gl_type,
pixel->data) );
GE( glTexParameteri (tex->gl_target, GL_GENERATE_MIPMAP, GL_FALSE) );
}
}
[cogl] Move the texture filters to be a property of the material layer The texture filters are now a property of the material layer rather than the texture object. Whenever a texture is painted with a material it sets the filters on all of the GL textures in the Cogl texture. The filter is cached so that it won't be changed unnecessarily. The automatic mipmap generation has changed so that the mipmaps are only generated when the texture is painted instead of every time the data changes. Changing the texture sets a flag to mark that the mipmaps are dirty. This works better if the FBO extension is available because we can use glGenerateMipmap. If the extension is not available it will temporarily enable automatic mipmap generation and reupload the first pixel of each slice. This requires tracking the data for the first pixel. The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to auto-mipmapping. The mipmap generation is now effectively free if you are not using a mipmap filter mode so you would only want to disable it if you had some special reason to generate your own mipmaps. ClutterTexture no longer has to store its own copy of the filter mode. Instead it stores it in the material and the property is directly set and read from that. This fixes problems with the filters getting out of sync when a cogl handle is set on the texture directly. It also avoids the mess of having to rerealize the texture if the filter quality changes to HIGH because Cogl will take of generating the mipmaps if needed.
2009-06-04 15:04:57 +00:00
tex->mipmaps_dirty = FALSE;
}
gboolean
cogl_texture_set_region (CoglHandle handle,
gint src_x,
gint src_y,
gint dst_x,
gint dst_y,
guint dst_width,
guint dst_height,
gint width,
gint height,
CoglPixelFormat format,
guint rowstride,
const guchar *data)
{
CoglTexture *tex;
gint bpp;
CoglBitmap source_bmp;
CoglBitmap temp_bmp;
gboolean source_bmp_owner = FALSE;
CoglPixelFormat closest_format;
GLenum closest_gl_format;
GLenum closest_gl_type;
gboolean success;
/* Check if valid texture handle */
if (!cogl_is_texture (handle))
return FALSE;
tex = _cogl_texture_pointer_from_handle (handle);
/* Check for valid format */
if (format == COGL_PIXEL_FORMAT_ANY)
return FALSE;
/* Shortcut out early if the image is empty */
if (width == 0 || height == 0)
return TRUE;
/* Init source bitmap */
source_bmp.width = width;
source_bmp.height = height;
source_bmp.format = format;
source_bmp.data = (guchar*)data;
/* Rowstride from width if none specified */
bpp = _cogl_get_format_bpp (format);
source_bmp.rowstride = (rowstride == 0) ? width * bpp : rowstride;
/* Find closest format to internal that's supported by GL */
closest_format = _cogl_pixel_format_to_gl (tex->bitmap.format,
NULL, /* don't need */
&closest_gl_format,
&closest_gl_type);
/* If no direct match, convert */
if (closest_format != format)
{
/* Convert to required format */
success = _cogl_bitmap_convert_and_premult (&source_bmp,
&temp_bmp,
closest_format);
/* Swap bitmaps if succeeded */
if (!success) return FALSE;
source_bmp = temp_bmp;
source_bmp_owner = TRUE;
}
/* Send data to GL */
_cogl_texture_upload_subregion_to_gl (tex,
src_x, src_y,
dst_x, dst_y,
dst_width, dst_height,
&source_bmp,
closest_gl_format,
closest_gl_type);
/* Free data if owner */
if (source_bmp_owner)
g_free (source_bmp.data);
return TRUE;
}
gint
cogl_texture_get_data (CoglHandle handle,
CoglPixelFormat format,
guint rowstride,
guchar *data)
{
CoglTexture *tex;
gint bpp;
gint byte_size;
CoglPixelFormat closest_format;
gint closest_bpp;
GLenum closest_gl_format;
GLenum closest_gl_type;
CoglBitmap target_bmp;
CoglBitmap new_bmp;
gboolean success;
guchar *src;
guchar *dst;
gint y;
/* Check if valid texture handle */
if (!cogl_is_texture (handle))
return 0;
tex = _cogl_texture_pointer_from_handle (handle);
/* Default to internal format if none specified */
if (format == COGL_PIXEL_FORMAT_ANY)
format = tex->bitmap.format;
/* Rowstride from texture width if none specified */
bpp = _cogl_get_format_bpp (format);
if (rowstride == 0) rowstride = tex->bitmap.width * bpp;
/* Return byte size if only that requested */
byte_size = tex->bitmap.height * rowstride;
if (data == NULL) return byte_size;
/* Find closest format that's supported by GL */
closest_format = _cogl_pixel_format_to_gl (format,
NULL, /* don't need */
&closest_gl_format,
&closest_gl_type);
closest_bpp = _cogl_get_format_bpp (closest_format);
/* Is the requested format supported? */
if (closest_format == format)
{
/* Target user data directly */
target_bmp = tex->bitmap;
target_bmp.format = format;
target_bmp.rowstride = rowstride;
target_bmp.data = data;
}
else
{
/* Target intermediate buffer */
target_bmp = tex->bitmap;
target_bmp.format = closest_format;
target_bmp.rowstride = target_bmp.width * closest_bpp;
target_bmp.data = (guchar*) g_malloc (target_bmp.height
* target_bmp.rowstride);
}
/* Retrieve data from slices */
_cogl_texture_download_from_gl (tex, &target_bmp,
closest_gl_format,
closest_gl_type);
/* Was intermediate used? */
if (closest_format != format)
{
/* Convert to requested format */
success = _cogl_bitmap_convert_and_premult (&target_bmp,
&new_bmp,
format);
/* Free intermediate data and return if failed */
g_free (target_bmp.data);
if (!success) return 0;
/* Copy to user buffer */
for (y = 0; y < new_bmp.height; ++y)
{
src = new_bmp.data + y * new_bmp.rowstride;
dst = data + y * rowstride;
memcpy (dst, src, new_bmp.width);
}
/* Free converted data */
g_free (new_bmp.data);
}
return byte_size;
}