1
0
Fork 0
mutter-performance-source/src/backends/native/meta-monitor-manager-kms.c

673 lines
22 KiB
C
Raw Normal View History

/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
2014-05-02 13:34:02 +00:00
/*
* Copyright (C) 2013 Red Hat Inc.
* Copyright (C) 2018 DisplayLink (UK) Ltd.
2014-05-02 13:34:02 +00:00
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
2014-05-02 13:34:02 +00:00
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* Author: Giovanni Campagna <gcampagn@redhat.com>
*/
2018-10-19 07:15:54 +00:00
/**
* SECTION:meta-monitor-manager-kms
* @title: MetaMonitorManagerKms
* @short_description: A subclass of #MetaMonitorManager using Linux DRM
*
* #MetaMonitorManagerKms is a subclass of #MetaMonitorManager which
* implements its functionality "natively": it uses the appropriate
* functions of the Linux DRM kernel module and using a udev client.
*
* See also #MetaMonitorManagerXrandr for an implementation using XRandR.
*/
#include "config.h"
#include "backends/native/meta-monitor-manager-kms.h"
#include <drm.h>
#include <errno.h>
#include <gudev/gudev.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <unistd.h>
#include "backends/meta-backend-private.h"
#include "backends/meta-crtc.h"
#include "backends/meta-monitor-config-manager.h"
#include "backends/meta-output.h"
#include "backends/native/meta-backend-native.h"
#include "backends/native/meta-crtc-kms.h"
#include "backends/native/meta-gpu-kms.h"
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
#include "backends/native/meta-kms-update.h"
#include "backends/native/meta-kms.h"
#include "backends/native/meta-launcher.h"
#include "backends/native/meta-output-kms.h"
#include "backends/native/meta-renderer-native.h"
#include "clutter/clutter.h"
#include "meta/main.h"
#include "meta/meta-x11-errors.h"
struct _MetaMonitorManagerKms
{
MetaMonitorManager parent_instance;
gulong kms_resources_changed_handler_id;
GHashTable *crtc_gamma_cache;
};
struct _MetaMonitorManagerKmsClass
{
MetaMonitorManagerClass parent_class;
};
static void
initable_iface_init (GInitableIface *initable_iface);
G_DEFINE_TYPE_WITH_CODE (MetaMonitorManagerKms, meta_monitor_manager_kms,
META_TYPE_MONITOR_MANAGER,
G_IMPLEMENT_INTERFACE (G_TYPE_INITABLE,
initable_iface_init))
static GBytes *
meta_monitor_manager_kms_read_edid (MetaMonitorManager *manager,
MetaOutput *output)
{
return meta_output_kms_read_edid (META_OUTPUT_KMS (output));
}
static void
meta_monitor_manager_kms_read_current_state (MetaMonitorManager *manager)
{
MetaMonitorManagerClass *parent_class =
META_MONITOR_MANAGER_CLASS (meta_monitor_manager_kms_parent_class);
MetaPowerSave power_save_mode;
power_save_mode = meta_monitor_manager_get_power_save_mode (manager);
if (power_save_mode != META_POWER_SAVE_ON)
meta_monitor_manager_power_save_mode_changed (manager,
META_POWER_SAVE_ON);
parent_class->read_current_state (manager);
}
uint64_t
meta_power_save_to_dpms_state (MetaPowerSave power_save)
{
switch (power_save)
{
case META_POWER_SAVE_ON:
return DRM_MODE_DPMS_ON;
case META_POWER_SAVE_STANDBY:
return DRM_MODE_DPMS_STANDBY;
case META_POWER_SAVE_SUSPEND:
return DRM_MODE_DPMS_SUSPEND;
case META_POWER_SAVE_OFF:
return DRM_MODE_DPMS_OFF;
case META_POWER_SAVE_UNSUPPORTED:
return DRM_MODE_DPMS_ON;
}
g_warn_if_reached ();
return DRM_MODE_DPMS_ON;
}
static void
meta_monitor_manager_kms_set_power_save_mode (MetaMonitorManager *manager,
MetaPowerSave mode)
{
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
MetaBackendNative *backend_native = META_BACKEND_NATIVE (backend);
MetaKms *kms = meta_backend_native_get_kms (backend_native);
GList *l;
switch (mode)
{
case META_POWER_SAVE_ON:
case META_POWER_SAVE_UNSUPPORTED:
/* This will be handled on mode set. */
return;
case META_POWER_SAVE_STANDBY:
case META_POWER_SAVE_SUSPEND:
case META_POWER_SAVE_OFF:
break;
}
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
for (l = meta_backend_get_gpus (backend); l; l = l->next)
{
MetaGpuKms *gpu_kms = l->data;
MetaKmsDevice *kms_device = meta_gpu_kms_get_kms_device (gpu_kms);
MetaKmsUpdate *kms_update;
MetaKmsUpdateFlag flags;
g_autoptr (MetaKmsFeedback) kms_feedback = NULL;
kms_update = meta_kms_ensure_pending_update (kms, kms_device);
meta_kms_update_set_power_save (kms_update);
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
flags = META_KMS_UPDATE_FLAG_NONE;
kms_feedback = meta_kms_post_pending_update_sync (kms,
kms_device,
flags);
if (meta_kms_feedback_get_result (kms_feedback) !=
META_KMS_FEEDBACK_PASSED)
{
g_warning ("Failed to enter power saving mode: %s",
meta_kms_feedback_get_error (kms_feedback)->message);
}
}
}
static void
meta_monitor_manager_kms_ensure_initial_config (MetaMonitorManager *manager)
{
MetaMonitorsConfig *config;
config = meta_monitor_manager_ensure_configured (manager);
meta_monitor_manager_update_logical_state (manager, config);
}
static void
apply_crtc_assignments (MetaMonitorManager *manager,
MetaCrtcAssignment **crtcs,
unsigned int n_crtcs,
MetaOutputAssignment **outputs,
unsigned int n_outputs)
{
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
g_autoptr (GList) to_configure_outputs = NULL;
g_autoptr (GList) to_configure_crtcs = NULL;
unsigned i;
GList *gpus;
GList *l;
gpus = meta_backend_get_gpus (backend);
for (l = gpus; l; l = l->next)
{
MetaGpu *gpu = l->data;
GList *crtcs;
GList *outputs;
outputs = g_list_copy (meta_gpu_get_outputs (gpu));
to_configure_outputs = g_list_concat (to_configure_outputs, outputs);
crtcs = g_list_copy (meta_gpu_get_crtcs (gpu));
to_configure_crtcs = g_list_concat (to_configure_crtcs, crtcs);
}
for (i = 0; i < n_crtcs; i++)
{
MetaCrtcAssignment *crtc_assignment = crtcs[i];
MetaCrtc *crtc = crtc_assignment->crtc;
to_configure_crtcs = g_list_remove (to_configure_crtcs, crtc);
if (crtc_assignment->mode == NULL)
{
meta_crtc_unset_config (crtc);
}
else
{
unsigned int j;
meta_crtc_set_config (crtc,
&crtc_assignment->layout,
crtc_assignment->mode,
crtc_assignment->transform);
for (j = 0; j < crtc_assignment->outputs->len; j++)
{
MetaOutput *output = g_ptr_array_index (crtc_assignment->outputs,
j);
MetaOutputAssignment *output_assignment;
to_configure_outputs = g_list_remove (to_configure_outputs,
output);
output_assignment = meta_find_output_assignment (outputs,
n_outputs,
output);
meta_output_assign_crtc (output, crtc, output_assignment);
}
}
}
g_list_foreach (to_configure_crtcs,
(GFunc) meta_crtc_unset_config,
NULL);
g_list_foreach (to_configure_outputs,
(GFunc) meta_output_unassign_crtc,
NULL);
}
static void
update_screen_size (MetaMonitorManager *manager,
MetaMonitorsConfig *config)
{
GList *l;
int screen_width = 0;
int screen_height = 0;
for (l = config->logical_monitor_configs; l; l = l->next)
{
MetaLogicalMonitorConfig *logical_monitor_config = l->data;
int right_edge;
int bottom_edge;
right_edge = (logical_monitor_config->layout.width +
logical_monitor_config->layout.x);
if (right_edge > screen_width)
screen_width = right_edge;
bottom_edge = (logical_monitor_config->layout.height +
logical_monitor_config->layout.y);
if (bottom_edge > screen_height)
screen_height = bottom_edge;
}
manager->screen_width = screen_width;
manager->screen_height = screen_height;
}
static gboolean
meta_monitor_manager_kms_apply_monitors_config (MetaMonitorManager *manager,
MetaMonitorsConfig *config,
MetaMonitorsConfigMethod method,
GError **error)
{
GPtrArray *crtc_assignments;
GPtrArray *output_assignments;
if (!config)
{
if (!manager->in_init)
{
MetaBackend *backend = meta_get_backend ();
MetaRenderer *renderer = meta_backend_get_renderer (backend);
meta_renderer_native_reset_modes (META_RENDERER_NATIVE (renderer));
}
manager->screen_width = META_MONITOR_MANAGER_MIN_SCREEN_WIDTH;
manager->screen_height = META_MONITOR_MANAGER_MIN_SCREEN_HEIGHT;
meta_monitor_manager_rebuild (manager, NULL);
return TRUE;
}
if (!meta_monitor_config_manager_assign (manager, config,
&crtc_assignments,
&output_assignments,
error))
return FALSE;
if (method == META_MONITORS_CONFIG_METHOD_VERIFY)
{
g_ptr_array_free (crtc_assignments, TRUE);
g_ptr_array_free (output_assignments, TRUE);
return TRUE;
}
apply_crtc_assignments (manager,
(MetaCrtcAssignment **) crtc_assignments->pdata,
crtc_assignments->len,
(MetaOutputAssignment **) output_assignments->pdata,
output_assignments->len);
g_ptr_array_free (crtc_assignments, TRUE);
g_ptr_array_free (output_assignments, TRUE);
update_screen_size (manager, config);
meta_monitor_manager_rebuild (manager, config);
return TRUE;
}
static void
meta_monitor_manager_kms_get_crtc_gamma (MetaMonitorManager *manager,
MetaCrtc *crtc,
gsize *size,
unsigned short **red,
unsigned short **green,
unsigned short **blue)
{
MetaKmsCrtc *kms_crtc;
const MetaKmsCrtcState *crtc_state;
kms_crtc = meta_crtc_kms_get_kms_crtc (META_CRTC_KMS (crtc));
crtc_state = meta_kms_crtc_get_current_state (kms_crtc);
*size = crtc_state->gamma.size;
*red = g_memdup2 (crtc_state->gamma.red, *size * sizeof **red);
*green = g_memdup2 (crtc_state->gamma.green, *size * sizeof **green);
*blue = g_memdup2 (crtc_state->gamma.blue, *size * sizeof **blue);
}
static char *
generate_gamma_ramp_string (size_t size,
unsigned short *red,
unsigned short *green,
unsigned short *blue)
{
GString *string;
int color;
string = g_string_new ("[");
for (color = 0; color < 3; color++)
{
unsigned short **color_ptr = NULL;
char color_char;
size_t i;
switch (color)
{
case 0:
color_ptr = &red;
color_char = 'r';
break;
case 1:
color_ptr = &green;
color_char = 'g';
break;
case 2:
color_ptr = &blue;
color_char = 'b';
break;
}
g_assert (color_ptr);
g_string_append_printf (string, " %c: ", color_char);
for (i = 0; i < MIN (4, size); i++)
{
int j;
if (size > 4)
{
if (i == 2)
g_string_append (string, ",...");
if (i >= 2)
j = i + (size - 4);
else
j = i;
}
else
{
j = i;
}
g_string_append_printf (string, "%s%hu",
j == 0 ? "" : ",",
(*color_ptr)[i]);
}
}
g_string_append (string, " ]");
return g_string_free (string, FALSE);
}
MetaKmsCrtcGamma *
meta_monitor_manager_kms_get_cached_crtc_gamma (MetaMonitorManagerKms *manager_kms,
MetaCrtcKms *crtc_kms)
{
uint64_t crtc_id;
crtc_id = meta_crtc_get_id (META_CRTC (crtc_kms));
return g_hash_table_lookup (manager_kms->crtc_gamma_cache,
GUINT_TO_POINTER (crtc_id));
}
static void
meta_monitor_manager_kms_set_crtc_gamma (MetaMonitorManager *manager,
MetaCrtc *crtc,
gsize size,
unsigned short *red,
unsigned short *green,
unsigned short *blue)
{
MetaMonitorManagerKms *manager_kms = META_MONITOR_MANAGER_KMS (manager);
MetaCrtcKms *crtc_kms = META_CRTC_KMS (crtc);
MetaKmsCrtc *kms_crtc = meta_crtc_kms_get_kms_crtc (META_CRTC_KMS (crtc));
g_autofree char *gamma_ramp_string = NULL;
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
ClutterStage *stage = CLUTTER_STAGE (meta_backend_get_stage (backend));
g_hash_table_replace (manager_kms->crtc_gamma_cache,
GUINT_TO_POINTER (meta_crtc_get_id (crtc)),
meta_kms_crtc_gamma_new (kms_crtc, size,
red, green, blue));
gamma_ramp_string = generate_gamma_ramp_string (size, red, green, blue);
g_debug ("Setting CRTC (%" G_GUINT64_FORMAT ") gamma to %s",
meta_crtc_get_id (crtc), gamma_ramp_string);
meta_crtc_kms_invalidate_gamma (crtc_kms);
clutter_stage_schedule_update (stage);
}
static void
handle_hotplug_event (MetaMonitorManager *manager)
{
meta_monitor_manager_reload (manager);
}
static void
on_kms_resources_changed (MetaKms *kms,
MetaMonitorManager *manager)
{
handle_hotplug_event (manager);
}
static void
meta_monitor_manager_kms_connect_hotplug_handler (MetaMonitorManagerKms *manager_kms)
{
MetaMonitorManager *manager = META_MONITOR_MANAGER (manager_kms);
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
MetaBackendNative *backend_native = META_BACKEND_NATIVE (backend);
MetaKms *kms = meta_backend_native_get_kms (backend_native);
manager_kms->kms_resources_changed_handler_id =
g_signal_connect (kms, "resources-changed",
G_CALLBACK (on_kms_resources_changed), manager);
}
static void
meta_monitor_manager_kms_disconnect_hotplug_handler (MetaMonitorManagerKms *manager_kms)
{
MetaMonitorManager *manager = META_MONITOR_MANAGER (manager_kms);
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
MetaBackendNative *backend_native = META_BACKEND_NATIVE (backend);
MetaKms *kms = meta_backend_native_get_kms (backend_native);
g_clear_signal_handler (&manager_kms->kms_resources_changed_handler_id, kms);
}
void
meta_monitor_manager_kms_pause (MetaMonitorManagerKms *manager_kms)
{
meta_monitor_manager_kms_disconnect_hotplug_handler (manager_kms);
}
void
meta_monitor_manager_kms_resume (MetaMonitorManagerKms *manager_kms)
{
meta_monitor_manager_kms_connect_hotplug_handler (manager_kms);
}
static gboolean
meta_monitor_manager_kms_is_transform_handled (MetaMonitorManager *manager,
MetaCrtc *crtc,
MetaMonitorTransform transform)
{
return meta_crtc_kms_is_transform_handled (META_CRTC_KMS (crtc), transform);
}
static float
meta_monitor_manager_kms_calculate_monitor_mode_scale (MetaMonitorManager *manager,
MetaMonitor *monitor,
MetaMonitorMode *monitor_mode)
{
return meta_monitor_calculate_mode_scale (monitor, monitor_mode);
}
static float *
meta_monitor_manager_kms_calculate_supported_scales (MetaMonitorManager *manager,
MetaLogicalMonitorLayoutMode layout_mode,
MetaMonitor *monitor,
MetaMonitorMode *monitor_mode,
int *n_supported_scales)
{
MetaMonitorScalesConstraint constraints =
META_MONITOR_SCALES_CONSTRAINT_NONE;
switch (layout_mode)
{
case META_LOGICAL_MONITOR_LAYOUT_MODE_LOGICAL:
break;
case META_LOGICAL_MONITOR_LAYOUT_MODE_PHYSICAL:
constraints |= META_MONITOR_SCALES_CONSTRAINT_NO_FRAC;
break;
}
return meta_monitor_calculate_supported_scales (monitor, monitor_mode,
constraints,
n_supported_scales);
}
static MetaMonitorManagerCapability
meta_monitor_manager_kms_get_capabilities (MetaMonitorManager *manager)
{
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
MetaSettings *settings = meta_backend_get_settings (backend);
MetaMonitorManagerCapability capabilities =
META_MONITOR_MANAGER_CAPABILITY_NONE;
if (meta_settings_is_experimental_feature_enabled (
settings,
META_EXPERIMENTAL_FEATURE_SCALE_MONITOR_FRAMEBUFFER))
capabilities |= META_MONITOR_MANAGER_CAPABILITY_LAYOUT_MODE;
return capabilities;
}
static gboolean
meta_monitor_manager_kms_get_max_screen_size (MetaMonitorManager *manager,
int *max_width,
int *max_height)
{
return FALSE;
}
static MetaLogicalMonitorLayoutMode
meta_monitor_manager_kms_get_default_layout_mode (MetaMonitorManager *manager)
{
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
MetaSettings *settings = meta_backend_get_settings (backend);
if (meta_settings_is_experimental_feature_enabled (
settings,
META_EXPERIMENTAL_FEATURE_SCALE_MONITOR_FRAMEBUFFER))
return META_LOGICAL_MONITOR_LAYOUT_MODE_LOGICAL;
else
return META_LOGICAL_MONITOR_LAYOUT_MODE_PHYSICAL;
}
static void
meta_monitor_manager_kms_dispose (GObject *object)
{
MetaMonitorManagerKms *manager_kms = META_MONITOR_MANAGER_KMS (object);
g_clear_pointer (&manager_kms->crtc_gamma_cache,
g_hash_table_unref);
G_OBJECT_CLASS (meta_monitor_manager_kms_parent_class)->dispose (object);
}
static gboolean
meta_monitor_manager_kms_initable_init (GInitable *initable,
GCancellable *cancellable,
GError **error)
{
MetaMonitorManagerKms *manager_kms = META_MONITOR_MANAGER_KMS (initable);
MetaMonitorManager *manager = META_MONITOR_MANAGER (manager_kms);
MetaBackend *backend = meta_monitor_manager_get_backend (manager);
gboolean can_have_outputs;
GList *l;
meta_monitor_manager_kms_connect_hotplug_handler (manager_kms);
can_have_outputs = FALSE;
for (l = meta_backend_get_gpus (backend); l; l = l->next)
{
MetaGpuKms *gpu_kms = l->data;
if (meta_gpu_kms_can_have_outputs (gpu_kms))
{
can_have_outputs = TRUE;
break;
}
}
if (!can_have_outputs)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_FOUND,
"No GPUs with outputs found");
return FALSE;
}
manager_kms->crtc_gamma_cache =
g_hash_table_new_full (NULL, NULL,
NULL,
(GDestroyNotify) meta_kms_crtc_gamma_free);
return TRUE;
}
static void
initable_iface_init (GInitableIface *initable_iface)
{
initable_iface->init = meta_monitor_manager_kms_initable_init;
}
static void
meta_monitor_manager_kms_init (MetaMonitorManagerKms *manager_kms)
{
}
static void
meta_monitor_manager_kms_class_init (MetaMonitorManagerKmsClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
MetaMonitorManagerClass *manager_class = META_MONITOR_MANAGER_CLASS (klass);
object_class->dispose = meta_monitor_manager_kms_dispose;
manager_class->read_edid = meta_monitor_manager_kms_read_edid;
manager_class->read_current_state = meta_monitor_manager_kms_read_current_state;
manager_class->ensure_initial_config = meta_monitor_manager_kms_ensure_initial_config;
manager_class->apply_monitors_config = meta_monitor_manager_kms_apply_monitors_config;
manager_class->set_power_save_mode = meta_monitor_manager_kms_set_power_save_mode;
manager_class->get_crtc_gamma = meta_monitor_manager_kms_get_crtc_gamma;
manager_class->set_crtc_gamma = meta_monitor_manager_kms_set_crtc_gamma;
manager_class->is_transform_handled = meta_monitor_manager_kms_is_transform_handled;
manager_class->calculate_monitor_mode_scale = meta_monitor_manager_kms_calculate_monitor_mode_scale;
manager_class->calculate_supported_scales = meta_monitor_manager_kms_calculate_supported_scales;
manager_class->get_capabilities = meta_monitor_manager_kms_get_capabilities;
manager_class->get_max_screen_size = meta_monitor_manager_kms_get_max_screen_size;
manager_class->get_default_layout_mode = meta_monitor_manager_kms_get_default_layout_mode;
}