Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
/*
|
|
|
|
* Cogl
|
|
|
|
*
|
2014-02-22 01:28:54 +00:00
|
|
|
* A Low Level GPU Graphics and Utilities API
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
*
|
|
|
|
* Copyright (C) 2011 Intel Corporation.
|
|
|
|
*
|
2014-02-22 01:28:54 +00:00
|
|
|
* Permission is hereby granted, free of charge, to any person
|
|
|
|
* obtaining a copy of this software and associated documentation
|
|
|
|
* files (the "Software"), to deal in the Software without
|
|
|
|
* restriction, including without limitation the rights to use, copy,
|
|
|
|
* modify, merge, publish, distribute, sublicense, and/or sell copies
|
|
|
|
* of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
*
|
2014-02-22 01:28:54 +00:00
|
|
|
* The above copyright notice and this permission notice shall be
|
|
|
|
* included in all copies or substantial portions of the Software.
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
*
|
2014-02-22 01:28:54 +00:00
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
* SOFTWARE.
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Robert Bragg <robert@linux.intel.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
|
|
#include "config.h"
|
|
|
|
#endif
|
|
|
|
|
2011-07-07 19:44:56 +00:00
|
|
|
#include <string.h>
|
|
|
|
|
2011-06-14 21:33:44 +00:00
|
|
|
#include "cogl-private.h"
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
#include "cogl-object.h"
|
|
|
|
|
|
|
|
#include "cogl-display-private.h"
|
2011-02-25 11:29:08 +00:00
|
|
|
#include "cogl-renderer-private.h"
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
#include "cogl-winsys-private.h"
|
2012-08-06 16:53:46 +00:00
|
|
|
#ifdef COGL_HAS_WAYLAND_EGL_SERVER_SUPPORT
|
|
|
|
#include "cogl-wayland-server.h"
|
|
|
|
#endif
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
|
|
|
|
static void _cogl_display_free (CoglDisplay *display);
|
|
|
|
|
|
|
|
COGL_OBJECT_DEFINE (Display, display);
|
|
|
|
|
2011-07-26 14:39:44 +00:00
|
|
|
static const CoglWinsysVtable *
|
|
|
|
_cogl_display_get_winsys (CoglDisplay *display)
|
|
|
|
{
|
|
|
|
return display->renderer->winsys_vtable;
|
|
|
|
}
|
|
|
|
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
static void
|
|
|
|
_cogl_display_free (CoglDisplay *display)
|
|
|
|
{
|
2011-07-26 14:39:44 +00:00
|
|
|
const CoglWinsysVtable *winsys;
|
|
|
|
|
|
|
|
if (display->setup)
|
|
|
|
{
|
|
|
|
winsys = _cogl_display_get_winsys (display);
|
|
|
|
winsys->display_destroy (display);
|
|
|
|
display->setup = FALSE;
|
|
|
|
}
|
|
|
|
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
if (display->renderer)
|
|
|
|
{
|
|
|
|
cogl_object_unref (display->renderer);
|
|
|
|
display->renderer = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (display->onscreen_template)
|
|
|
|
{
|
|
|
|
cogl_object_unref (display->onscreen_template);
|
|
|
|
display->onscreen_template = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
g_slice_free (CoglDisplay, display);
|
|
|
|
}
|
|
|
|
|
|
|
|
CoglDisplay *
|
|
|
|
cogl_display_new (CoglRenderer *renderer,
|
|
|
|
CoglOnscreenTemplate *onscreen_template)
|
|
|
|
{
|
|
|
|
CoglDisplay *display = g_slice_new0 (CoglDisplay);
|
2012-08-31 18:28:27 +00:00
|
|
|
CoglError *error = NULL;
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
|
2011-06-14 21:33:44 +00:00
|
|
|
_cogl_init ();
|
|
|
|
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
display->renderer = renderer;
|
|
|
|
if (renderer)
|
|
|
|
cogl_object_ref (renderer);
|
|
|
|
else
|
|
|
|
display->renderer = cogl_renderer_new ();
|
|
|
|
|
|
|
|
if (!cogl_renderer_connect (display->renderer, &error))
|
2012-04-10 18:21:55 +00:00
|
|
|
g_error ("Failed to connect to renderer: %s\n", error->message);
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
|
|
|
|
display->setup = FALSE;
|
|
|
|
|
2011-07-26 14:32:47 +00:00
|
|
|
#ifdef COGL_HAS_EGL_PLATFORM_GDL_SUPPORT
|
|
|
|
display->gdl_plane = GDL_PLANE_ID_UPP_C;
|
|
|
|
#endif
|
|
|
|
|
2013-03-01 14:50:43 +00:00
|
|
|
display = _cogl_display_object_new (display);
|
|
|
|
|
|
|
|
cogl_display_set_onscreen_template (display, onscreen_template);
|
|
|
|
|
|
|
|
return display;
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
}
|
|
|
|
|
2011-08-25 16:35:34 +00:00
|
|
|
CoglRenderer *
|
|
|
|
cogl_display_get_renderer (CoglDisplay *display)
|
|
|
|
{
|
|
|
|
return display->renderer;
|
|
|
|
}
|
|
|
|
|
2013-03-01 14:50:43 +00:00
|
|
|
void
|
|
|
|
cogl_display_set_onscreen_template (CoglDisplay *display,
|
|
|
|
CoglOnscreenTemplate *onscreen_template)
|
|
|
|
{
|
|
|
|
_COGL_RETURN_IF_FAIL (display->setup == FALSE);
|
|
|
|
|
|
|
|
if (onscreen_template)
|
|
|
|
cogl_object_ref (onscreen_template);
|
|
|
|
|
|
|
|
if (display->onscreen_template)
|
|
|
|
cogl_object_unref (display->onscreen_template);
|
|
|
|
|
|
|
|
display->onscreen_template = onscreen_template;
|
|
|
|
|
|
|
|
/* NB: we want to maintain the invariable that there is always an
|
|
|
|
* onscreen template associated with a CoglDisplay... */
|
|
|
|
if (!onscreen_template)
|
|
|
|
display->onscreen_template = cogl_onscreen_template_new (NULL);
|
|
|
|
}
|
|
|
|
|
Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-04-16 20:56:40 +00:00
|
|
|
CoglBool
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
cogl_display_setup (CoglDisplay *display,
|
2012-08-31 18:28:27 +00:00
|
|
|
CoglError **error)
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
{
|
2011-02-25 11:29:08 +00:00
|
|
|
const CoglWinsysVtable *winsys;
|
|
|
|
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
if (display->setup)
|
|
|
|
return TRUE;
|
|
|
|
|
2011-02-25 11:29:08 +00:00
|
|
|
winsys = _cogl_display_get_winsys (display);
|
|
|
|
if (!winsys->display_setup (display, error))
|
2010-11-05 12:28:33 +00:00
|
|
|
return FALSE;
|
|
|
|
|
Adds renderer,display,onscreen-template and swap-chain stubs
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
2011-02-25 17:06:50 +00:00
|
|
|
display->setup = TRUE;
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
2011-03-04 12:50:39 +00:00
|
|
|
|
|
|
|
#ifdef COGL_HAS_EGL_PLATFORM_GDL_SUPPORT
|
|
|
|
void
|
|
|
|
cogl_gdl_display_set_plane (CoglDisplay *display,
|
2011-07-22 16:06:11 +00:00
|
|
|
gdl_plane_id_t plane)
|
2011-03-04 12:50:39 +00:00
|
|
|
{
|
2011-10-13 21:34:30 +00:00
|
|
|
_COGL_RETURN_IF_FAIL (display->setup == FALSE);
|
2011-03-04 12:50:39 +00:00
|
|
|
|
|
|
|
display->gdl_plane = plane;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2011-05-25 00:37:56 +00:00
|
|
|
#ifdef COGL_HAS_WAYLAND_EGL_SERVER_SUPPORT
|
|
|
|
void
|
|
|
|
cogl_wayland_display_set_compositor_display (CoglDisplay *display,
|
|
|
|
struct wl_display *wayland_display)
|
|
|
|
{
|
2011-10-13 21:34:30 +00:00
|
|
|
_COGL_RETURN_IF_FAIL (display->setup == FALSE);
|
2011-05-25 00:37:56 +00:00
|
|
|
|
|
|
|
display->wayland_compositor_display = wayland_display;
|
|
|
|
}
|
|
|
|
#endif
|