1
0
Fork 0
mutter-performance-source/cogl/cogl-atlas.c

691 lines
23 KiB
C
Raw Normal View History

/*
* Cogl
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-22 01:28:54 +00:00
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2010,2011 Intel Corporation.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-22 01:28:54 +00:00
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-22 01:28:54 +00:00
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
This re-licenses Cogl 1.18 under the MIT license Since the Cogl 1.18 branch is actively maintained in parallel with the master branch; this is a counter part to commit 1b83ef938fc16b which re-licensed the master branch to use the MIT license. This re-licensing is a follow up to the proposal that was sent to the Cogl mailing list: http://lists.freedesktop.org/archives/cogl/2013-December/001465.html Note: there was a copyright assignment policy in place for Clutter (and therefore Cogl which was part of Clutter at the time) until the 11th of June 2010 and so we only checked the details after that point (commit 0bbf50f905) For each file, authors were identified via this Git command: $ git blame -p -C -C -C20 -M -M10 0bbf50f905..HEAD We received blanket approvals for re-licensing all Red Hat and Collabora contributions which reduced how many people needed to be contacted individually: - http://lists.freedesktop.org/archives/cogl/2013-December/001470.html - http://lists.freedesktop.org/archives/cogl/2014-January/001536.html Individual approval requests were sent to all the other identified authors who all confirmed the re-license on the Cogl mailinglist: http://lists.freedesktop.org/archives/cogl/2014-January As well as updating the copyright header in all sources files, the COPYING file has been updated to reflect the license change and also document the other licenses used in Cogl such as the SGI Free Software License B, version 2.0 and the 3-clause BSD license. This patch was not simply cherry-picked from master; but the same methodology was used to check the source files.
2014-02-22 01:28:54 +00:00
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Neil Roberts <neil@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-atlas.h"
#include "cogl-rectangle-map.h"
#include "cogl-context-private.h"
#include "cogl-texture-private.h"
#include "cogl-texture-2d-private.h"
#include "cogl-texture-2d-sliced.h"
#include "cogl-texture-driver.h"
cogl: rename CoglMaterial -> CoglPipeline This applies an API naming change that's been deliberated over for a while now which is to rename CoglMaterial to CoglPipeline. For now the new pipeline API is marked as experimental and public headers continue to talk about materials not pipelines. The CoglMaterial API is now maintained in terms of the cogl_pipeline API internally. Currently this API is targeting Cogl 2.0 so we will have time to integrate it properly with other upcoming Cogl 2.0 work. The basic reasons for the rename are: - That the term "material" implies to many people that they are constrained to fragment processing; perhaps as some kind of high-level texture abstraction. - In Clutter they get exposed by ClutterTexture actors which may be re-inforcing this misconception. - When comparing how other frameworks use the term material, a material sometimes describes a multi-pass fragment processing technique which isn't the case in Cogl. - In code, "CoglPipeline" will hopefully be a much more self documenting summary of what these objects represent; a full GPU pipeline configuration including, for example, vertex processing, fragment processing and blending. - When considering the API documentation story, at some point we need a document introducing developers to how the "GPU pipeline" works so it should become intuitive that CoglPipeline maps back to that description of the GPU pipeline. - This is consistent in terminology and concept to OpenGL 4's new pipeline object which is a container for program objects. Note: The cogl-material.[ch] files have been renamed to cogl-material-compat.[ch] because otherwise git doesn't seem to treat the change as a moving the old cogl-material.c->cogl-pipeline.c and so we loose all our git-blame history.
2010-10-27 17:54:57 +00:00
#include "cogl-pipeline-opengl-private.h"
#include "cogl-debug.h"
#include "cogl-framebuffer-private.h"
#include "cogl-blit.h"
#include "cogl-private.h"
#include <stdlib.h>
static void _cogl_atlas_free (CoglAtlas *atlas);
COGL_OBJECT_INTERNAL_DEFINE (Atlas, atlas);
CoglAtlas *
_cogl_atlas_new (CoglPixelFormat texture_format,
CoglAtlasFlags flags,
CoglAtlasUpdatePositionCallback update_position_cb)
{
CoglAtlas *atlas = g_new (CoglAtlas, 1);
atlas->update_position_cb = update_position_cb;
atlas->map = NULL;
atlas->texture = NULL;
atlas->flags = flags;
atlas->texture_format = texture_format;
g_hook_list_init (&atlas->pre_reorganize_callbacks, sizeof (GHook));
g_hook_list_init (&atlas->post_reorganize_callbacks, sizeof (GHook));
return _cogl_atlas_object_new (atlas);
}
static void
_cogl_atlas_free (CoglAtlas *atlas)
{
COGL_NOTE (ATLAS, "%p: Atlas destroyed", atlas);
if (atlas->texture)
cogl_object_unref (atlas->texture);
if (atlas->map)
_cogl_rectangle_map_free (atlas->map);
g_hook_list_clear (&atlas->pre_reorganize_callbacks);
g_hook_list_clear (&atlas->post_reorganize_callbacks);
g_free (atlas);
}
typedef struct _CoglAtlasRepositionData
{
/* The current user data for this texture */
void *user_data;
/* The old and new positions of the texture */
CoglRectangleMapEntry old_position;
CoglRectangleMapEntry new_position;
} CoglAtlasRepositionData;
static void
_cogl_atlas_migrate (CoglAtlas *atlas,
unsigned int n_textures,
CoglAtlasRepositionData *textures,
CoglTexture *old_texture,
CoglTexture *new_texture,
void *skip_user_data)
{
unsigned int i;
CoglBlitData blit_data;
/* If the 'disable migrate' flag is set then we won't actually copy
the textures to their new location. Instead we'll just invoke the
callback to update the position */
if ((atlas->flags & COGL_ATLAS_DISABLE_MIGRATION))
for (i = 0; i < n_textures; i++)
/* Update the texture position */
atlas->update_position_cb (textures[i].user_data,
new_texture,
&textures[i].new_position);
else
{
_cogl_blit_begin (&blit_data, new_texture, old_texture);
for (i = 0; i < n_textures; i++)
{
/* Skip the texture that is being added because it doesn't contain
any data yet */
if (textures[i].user_data != skip_user_data)
_cogl_blit (&blit_data,
textures[i].old_position.x,
textures[i].old_position.y,
textures[i].new_position.x,
textures[i].new_position.y,
textures[i].new_position.width,
textures[i].new_position.height);
/* Update the texture position */
atlas->update_position_cb (textures[i].user_data,
new_texture,
&textures[i].new_position);
}
_cogl_blit_end (&blit_data);
}
}
typedef struct _CoglAtlasGetRectanglesData
{
CoglAtlasRepositionData *textures;
/* Number of textures found so far */
unsigned int n_textures;
} CoglAtlasGetRectanglesData;
static void
_cogl_atlas_get_rectangles_cb (const CoglRectangleMapEntry *rectangle,
void *rect_data,
void *user_data)
{
CoglAtlasGetRectanglesData *data = user_data;
data->textures[data->n_textures].old_position = *rectangle;
data->textures[data->n_textures++].user_data = rect_data;
}
static void
_cogl_atlas_get_next_size (unsigned int *map_width,
unsigned int *map_height)
{
/* Double the size of the texture by increasing whichever dimension
is smaller */
if (*map_width < *map_height)
*map_width <<= 1;
else
*map_height <<= 1;
}
static void
_cogl_atlas_get_initial_size (CoglPixelFormat format,
unsigned int *map_width,
unsigned int *map_height)
{
unsigned int size;
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
ctx->driver_vtable->pixel_format_to_gl (ctx,
format,
&gl_intformat,
&gl_format,
&gl_type);
/* At least on Intel hardware, the texture size will be rounded up
to at least 1MB so we might as well try to aim for that as an
initial minimum size. If the format is only 1 byte per pixel we
can use 1024x1024, otherwise we'll assume it will take 4 bytes
per pixel and use 512x512. */
if (_cogl_pixel_format_get_bytes_per_pixel (format) == 1)
size = 1024;
else
size = 512;
/* Some platforms might not support this large size so we'll
decrease the size until it can */
while (size > 1 &&
!ctx->texture_driver->size_supported (ctx,
GL_TEXTURE_2D,
gl_intformat,
gl_format,
gl_type,
size, size))
size >>= 1;
*map_width = size;
*map_height = size;
}
static CoglRectangleMap *
_cogl_atlas_create_map (CoglPixelFormat format,
unsigned int map_width,
unsigned int map_height,
unsigned int n_textures,
CoglAtlasRepositionData *textures)
{
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
_COGL_GET_CONTEXT (ctx, NULL);
ctx->driver_vtable->pixel_format_to_gl (ctx,
format,
&gl_intformat,
&gl_format,
&gl_type);
/* Keep trying increasingly larger atlases until we can fit all of
the textures */
while (ctx->texture_driver->size_supported (ctx,
GL_TEXTURE_2D,
gl_intformat,
gl_format,
gl_type,
map_width, map_height))
{
CoglRectangleMap *new_atlas = _cogl_rectangle_map_new (map_width,
map_height,
NULL);
unsigned int i;
COGL_NOTE (ATLAS, "Trying to resize the atlas to %ux%u",
map_width, map_height);
/* Add all of the textures and keep track of the new position */
for (i = 0; i < n_textures; i++)
if (!_cogl_rectangle_map_add (new_atlas,
textures[i].old_position.width,
textures[i].old_position.height,
textures[i].user_data,
&textures[i].new_position))
break;
/* If the atlas can contain all of the textures then we have a
winner */
if (i >= n_textures)
return new_atlas;
else
COGL_NOTE (ATLAS, "Atlas size abandoned after trying "
"%u out of %u textures",
i, n_textures);
_cogl_rectangle_map_free (new_atlas);
_cogl_atlas_get_next_size (&map_width, &map_height);
}
/* If we get here then there's no atlas that can accommodate all of
the rectangles */
return NULL;
}
static CoglTexture2D *
_cogl_atlas_create_texture (CoglAtlas *atlas,
int width,
int height)
{
CoglTexture2D *tex;
CoglError *ignore_error = NULL;
_COGL_GET_CONTEXT (ctx, NULL);
if ((atlas->flags & COGL_ATLAS_CLEAR_TEXTURE))
{
uint8_t *clear_data;
CoglBitmap *clear_bmp;
int bpp = _cogl_pixel_format_get_bytes_per_pixel (atlas->texture_format);
/* Create a buffer of zeroes to initially clear the texture */
clear_data = g_malloc0 (width * height * bpp);
clear_bmp = cogl_bitmap_new_for_data (ctx,
width,
height,
atlas->texture_format,
width * bpp,
clear_data);
tex = cogl_texture_2d_new_from_bitmap (clear_bmp);
_cogl_texture_set_internal_format (COGL_TEXTURE (tex),
atlas->texture_format);
if (!cogl_texture_allocate (COGL_TEXTURE (tex), &ignore_error))
{
cogl_error_free (ignore_error);
cogl_object_unref (tex);
tex = NULL;
}
cogl_object_unref (clear_bmp);
g_free (clear_data);
}
else
{
tex = cogl_texture_2d_new_with_size (ctx, width, height);
_cogl_texture_set_internal_format (COGL_TEXTURE (tex),
atlas->texture_format);
if (!cogl_texture_allocate (COGL_TEXTURE (tex), &ignore_error))
{
cogl_error_free (ignore_error);
cogl_object_unref (tex);
tex = NULL;
}
}
return tex;
}
static int
_cogl_atlas_compare_size_cb (const void *a,
const void *b)
{
const CoglAtlasRepositionData *ta = a;
const CoglAtlasRepositionData *tb = b;
unsigned int a_size, b_size;
a_size = ta->old_position.width * ta->old_position.height;
b_size = tb->old_position.width * tb->old_position.height;
return a_size < b_size ? 1 : a_size > b_size ? -1 : 0;
}
static void
_cogl_atlas_notify_pre_reorganize (CoglAtlas *atlas)
{
g_hook_list_invoke (&atlas->pre_reorganize_callbacks, FALSE);
}
static void
_cogl_atlas_notify_post_reorganize (CoglAtlas *atlas)
{
g_hook_list_invoke (&atlas->post_reorganize_callbacks, FALSE);
}
CoglBool
_cogl_atlas_reserve_space (CoglAtlas *atlas,
unsigned int width,
unsigned int height,
void *user_data)
{
CoglAtlasGetRectanglesData data;
CoglRectangleMap *new_map;
CoglTexture2D *new_tex;
unsigned int map_width, map_height;
CoglBool ret;
CoglRectangleMapEntry new_position;
/* Check if we can fit the rectangle into the existing map */
if (atlas->map &&
_cogl_rectangle_map_add (atlas->map, width, height,
user_data,
&new_position))
{
COGL_NOTE (ATLAS, "%p: Atlas is %ix%i, has %i textures and is %i%% waste",
atlas,
_cogl_rectangle_map_get_width (atlas->map),
_cogl_rectangle_map_get_height (atlas->map),
_cogl_rectangle_map_get_n_rectangles (atlas->map),
/* waste as a percentage */
_cogl_rectangle_map_get_remaining_space (atlas->map) *
100 / (_cogl_rectangle_map_get_width (atlas->map) *
_cogl_rectangle_map_get_height (atlas->map)));
atlas->update_position_cb (user_data,
atlas->texture,
&new_position);
return TRUE;
}
/* If we make it here then we need to reorganize the atlas. First
we'll notify any users of the atlas that this is going to happen
so that for example in CoglAtlasTexture it can notify that the
storage has changed and cause a flush */
_cogl_atlas_notify_pre_reorganize (atlas);
/* Get an array of all the textures currently in the atlas. */
data.n_textures = 0;
if (atlas->map == NULL)
data.textures = g_malloc (sizeof (CoglAtlasRepositionData));
else
{
unsigned int n_rectangles =
_cogl_rectangle_map_get_n_rectangles (atlas->map);
data.textures = g_malloc (sizeof (CoglAtlasRepositionData) *
(n_rectangles + 1));
_cogl_rectangle_map_foreach (atlas->map,
_cogl_atlas_get_rectangles_cb,
&data);
}
/* Add the new rectangle as a dummy texture so that it can be
positioned with the rest */
data.textures[data.n_textures].old_position.x = 0;
data.textures[data.n_textures].old_position.y = 0;
data.textures[data.n_textures].old_position.width = width;
data.textures[data.n_textures].old_position.height = height;
data.textures[data.n_textures++].user_data = user_data;
/* The atlasing algorithm works a lot better if the rectangles are
added in decreasing order of size so we'll first sort the
array */
qsort (data.textures, data.n_textures,
sizeof (CoglAtlasRepositionData),
_cogl_atlas_compare_size_cb);
/* Try to create a new atlas that can contain all of the textures */
if (atlas->map)
{
map_width = _cogl_rectangle_map_get_width (atlas->map);
map_height = _cogl_rectangle_map_get_height (atlas->map);
/* If there is enough space in for the new rectangle in the
existing atlas with at least 6% waste we'll start with the
same size, otherwise we'll immediately double it */
if ((map_width * map_height -
_cogl_rectangle_map_get_remaining_space (atlas->map) +
width * height) * 53 / 50 >
map_width * map_height)
_cogl_atlas_get_next_size (&map_width, &map_height);
}
else
_cogl_atlas_get_initial_size (atlas->texture_format,
&map_width, &map_height);
new_map = _cogl_atlas_create_map (atlas->texture_format,
map_width, map_height,
data.n_textures, data.textures);
/* If we can't create a map with the texture then give up */
if (new_map == NULL)
{
COGL_NOTE (ATLAS, "%p: Could not fit texture in the atlas", atlas);
ret = FALSE;
}
/* We need to migrate the existing textures into a new texture */
else if ((new_tex = _cogl_atlas_create_texture
(atlas,
_cogl_rectangle_map_get_width (new_map),
_cogl_rectangle_map_get_height (new_map))) == NULL)
{
COGL_NOTE (ATLAS, "%p: Could not create a CoglTexture2D", atlas);
_cogl_rectangle_map_free (new_map);
ret = FALSE;
}
else
{
int waste;
COGL_NOTE (ATLAS,
"%p: Atlas %s with size %ix%i",
atlas,
atlas->map == NULL ||
_cogl_rectangle_map_get_width (atlas->map) !=
_cogl_rectangle_map_get_width (new_map) ||
_cogl_rectangle_map_get_height (atlas->map) !=
_cogl_rectangle_map_get_height (new_map) ?
"resized" : "reorganized",
_cogl_rectangle_map_get_width (new_map),
_cogl_rectangle_map_get_height (new_map));
if (atlas->map)
{
/* Move all the textures to the right position in the new
texture. This will also update the texture's rectangle */
_cogl_atlas_migrate (atlas,
data.n_textures,
data.textures,
atlas->texture,
COGL_TEXTURE (new_tex),
user_data);
_cogl_rectangle_map_free (atlas->map);
cogl_object_unref (atlas->texture);
}
else
/* We know there's only one texture so we can just directly
update the rectangle from its new position */
atlas->update_position_cb (data.textures[0].user_data,
COGL_TEXTURE (new_tex),
&data.textures[0].new_position);
atlas->map = new_map;
atlas->texture = COGL_TEXTURE (new_tex);
waste = (_cogl_rectangle_map_get_remaining_space (atlas->map) *
100 / (_cogl_rectangle_map_get_width (atlas->map) *
_cogl_rectangle_map_get_height (atlas->map)));
COGL_NOTE (ATLAS, "%p: Atlas is %ix%i, has %i textures and is %i%% waste",
atlas,
_cogl_rectangle_map_get_width (atlas->map),
_cogl_rectangle_map_get_height (atlas->map),
_cogl_rectangle_map_get_n_rectangles (atlas->map),
waste);
ret = TRUE;
}
g_free (data.textures);
_cogl_atlas_notify_post_reorganize (atlas);
return ret;
}
void
_cogl_atlas_remove (CoglAtlas *atlas,
const CoglRectangleMapEntry *rectangle)
{
_cogl_rectangle_map_remove (atlas->map, rectangle);
COGL_NOTE (ATLAS, "%p: Removed rectangle sized %ix%i",
atlas,
rectangle->width,
rectangle->height);
COGL_NOTE (ATLAS, "%p: Atlas is %ix%i, has %i textures and is %i%% waste",
atlas,
_cogl_rectangle_map_get_width (atlas->map),
_cogl_rectangle_map_get_height (atlas->map),
_cogl_rectangle_map_get_n_rectangles (atlas->map),
_cogl_rectangle_map_get_remaining_space (atlas->map) *
100 / (_cogl_rectangle_map_get_width (atlas->map) *
_cogl_rectangle_map_get_height (atlas->map)));
};
static CoglTexture *
create_migration_texture (CoglContext *ctx,
int width,
int height,
CoglPixelFormat internal_format)
{
CoglTexture *tex;
CoglError *skip_error = NULL;
if ((_cogl_util_is_pot (width) && _cogl_util_is_pot (height)) ||
(cogl_has_feature (ctx, COGL_FEATURE_ID_TEXTURE_NPOT_BASIC) &&
cogl_has_feature (ctx, COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP)))
{
/* First try creating a fast-path non-sliced texture */
tex = COGL_TEXTURE (cogl_texture_2d_new_with_size (ctx,
width, height));
_cogl_texture_set_internal_format (tex, internal_format);
/* TODO: instead of allocating storage here it would be better
* if we had some api that let us just check that the size is
* supported by the hardware so storage could be allocated
* lazily when uploading data. */
if (!cogl_texture_allocate (tex, &skip_error))
{
cogl_error_free (skip_error);
cogl_object_unref (tex);
tex = NULL;
}
}
else
tex = NULL;
if (!tex)
{
CoglTexture2DSliced *tex_2ds =
cogl_texture_2d_sliced_new_with_size (ctx,
width,
height,
COGL_TEXTURE_MAX_WASTE);
_cogl_texture_set_internal_format (COGL_TEXTURE (tex_2ds),
internal_format);
tex = COGL_TEXTURE (tex_2ds);
}
return tex;
}
CoglTexture *
_cogl_atlas_copy_rectangle (CoglAtlas *atlas,
int x,
int y,
int width,
int height,
CoglPixelFormat internal_format)
{
CoglTexture *tex;
CoglBlitData blit_data;
CoglError *ignore_error = NULL;
_COGL_GET_CONTEXT (ctx, NULL);
/* Create a new texture at the right size */
tex = create_migration_texture (ctx, width, height, internal_format);
if (!cogl_texture_allocate (tex, &ignore_error))
{
cogl_error_free (ignore_error);
cogl_object_unref (tex);
return NULL;
}
/* Blit the data out of the atlas to the new texture. If FBOs
aren't available this will end up having to copy the entire
atlas texture */
_cogl_blit_begin (&blit_data, tex, atlas->texture);
_cogl_blit (&blit_data,
x, y,
0, 0,
width, height);
_cogl_blit_end (&blit_data);
return tex;
}
void
_cogl_atlas_add_reorganize_callback (CoglAtlas *atlas,
GHookFunc pre_callback,
GHookFunc post_callback,
void *user_data)
{
if (pre_callback)
{
GHook *hook = g_hook_alloc (&atlas->post_reorganize_callbacks);
hook->func = pre_callback;
hook->data = user_data;
g_hook_prepend (&atlas->pre_reorganize_callbacks, hook);
}
if (post_callback)
{
GHook *hook = g_hook_alloc (&atlas->pre_reorganize_callbacks);
hook->func = post_callback;
hook->data = user_data;
g_hook_prepend (&atlas->post_reorganize_callbacks, hook);
}
}
void
_cogl_atlas_remove_reorganize_callback (CoglAtlas *atlas,
GHookFunc pre_callback,
GHookFunc post_callback,
void *user_data)
{
if (pre_callback)
{
GHook *hook = g_hook_find_func_data (&atlas->pre_reorganize_callbacks,
FALSE,
pre_callback,
user_data);
if (hook)
g_hook_destroy_link (&atlas->pre_reorganize_callbacks, hook);
}
if (post_callback)
{
GHook *hook = g_hook_find_func_data (&atlas->post_reorganize_callbacks,
FALSE,
post_callback,
user_data);
if (hook)
g_hook_destroy_link (&atlas->post_reorganize_callbacks, hook);
}
}