Add a cogl_matrix_init_from_euler function
This creates a matrix to represent the given euler rotation. This should be more efficient than creating the matrix by doing three separate rotations because no separate intermediate matrices are created and no matrix multiplication is needed. Reviewed-by: Robert Bragg <robert@linux.intel.com> (cherry picked from commit e66d9965897999a4889063f6df9a20ea6abf97fe)
This commit is contained in:
parent
0210cc40f9
commit
6eb8864866
3 changed files with 91 additions and 0 deletions
|
@ -1751,6 +1751,84 @@ cogl_matrix_init_from_quaternion (CoglMatrix *matrix,
|
|||
_cogl_matrix_init_from_quaternion (matrix, quaternion);
|
||||
}
|
||||
|
||||
void
|
||||
cogl_matrix_init_from_euler (CoglMatrix *matrix,
|
||||
const CoglEuler *euler)
|
||||
{
|
||||
/* Convert angles to radians */
|
||||
float heading_rad = euler->heading / 180.0f * G_PI;
|
||||
float pitch_rad = euler->pitch / 180.0f * G_PI;
|
||||
float roll_rad = euler->roll / 180.0f * G_PI;
|
||||
/* Pre-calculate the sin and cos */
|
||||
float sin_heading = sinf (heading_rad);
|
||||
float cos_heading = cosf (heading_rad);
|
||||
float sin_pitch = sinf (pitch_rad);
|
||||
float cos_pitch = cosf (pitch_rad);
|
||||
float sin_roll = sinf (roll_rad);
|
||||
float cos_roll = cosf (roll_rad);
|
||||
|
||||
/* These calculations are based on the following website but they
|
||||
* use a different order for the rotations so it has been modified
|
||||
* slightly.
|
||||
* http://www.euclideanspace.com/maths/geometry/
|
||||
* rotations/conversions/eulerToMatrix/index.htm
|
||||
*/
|
||||
|
||||
/* Heading rotation x=0, y=1, z=0 gives:
|
||||
*
|
||||
* [ ch 0 sh 0 ]
|
||||
* [ 0 1 0 0 ]
|
||||
* [ -sh 0 ch 0 ]
|
||||
* [ 0 0 0 1 ]
|
||||
*
|
||||
* Pitch rotation x=1, y=0, z=0 gives:
|
||||
* [ 1 0 0 0 ]
|
||||
* [ 0 cp -sp 0 ]
|
||||
* [ 0 sp cp 0 ]
|
||||
* [ 0 0 0 1 ]
|
||||
*
|
||||
* Roll rotation x=0, y=0, z=1 gives:
|
||||
* [ cr -sr 0 0 ]
|
||||
* [ sr cr 0 0 ]
|
||||
* [ 0 0 1 0 ]
|
||||
* [ 0 0 0 1 ]
|
||||
*
|
||||
* Heading matrix * pitch matrix =
|
||||
* [ ch sh*sp cp*sh 0 ]
|
||||
* [ 0 cp -sp 0 ]
|
||||
* [ -sh ch*sp ch*cp 0 ]
|
||||
* [ 0 0 0 1 ]
|
||||
*
|
||||
* That matrix * roll matrix =
|
||||
* [ ch*cr + sh*sp*sr sh*sp*cr - ch*sr sh*cp 0 ]
|
||||
* [ cp*sr cp*cr -sp 0 ]
|
||||
* [ ch*sp*sr - sh*cr sh*sr + ch*sp*cr ch*cp 0 ]
|
||||
* [ 0 0 0 1 ]
|
||||
*/
|
||||
|
||||
matrix->xx = cos_heading * cos_roll + sin_heading * sin_pitch * sin_roll;
|
||||
matrix->yx = cos_pitch * sin_roll;
|
||||
matrix->zx = cos_heading * sin_pitch * sin_roll - sin_heading * cos_roll;
|
||||
matrix->wx = 0.0f;
|
||||
|
||||
matrix->xy = sin_heading * sin_pitch * cos_roll - cos_heading * sin_roll;
|
||||
matrix->yy = cos_pitch * cos_roll;
|
||||
matrix->zy = sin_heading * sin_roll + cos_heading * sin_pitch * cos_roll;
|
||||
matrix->wy = 0.0f;
|
||||
|
||||
matrix->xz = sin_heading * cos_pitch;
|
||||
matrix->yz = -sin_pitch;
|
||||
matrix->zz = cos_heading * cos_pitch;
|
||||
matrix->wz = 0;
|
||||
|
||||
matrix->xw = 0;
|
||||
matrix->yw = 0;
|
||||
matrix->zw = 0;
|
||||
matrix->ww = 1;
|
||||
|
||||
matrix->flags = (MAT_FLAG_GENERAL | MAT_DIRTY_ALL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Transpose a float matrix.
|
||||
*/
|
||||
|
|
|
@ -491,6 +491,17 @@ cogl_matrix_get_array (const CoglMatrix *matrix);
|
|||
void
|
||||
cogl_matrix_init_from_quaternion (CoglMatrix *matrix,
|
||||
const CoglQuaternion *quaternion);
|
||||
|
||||
/**
|
||||
* cogl_matrix_init_from_euler:
|
||||
* @matrix: A 4x4 transformation matrix
|
||||
* @euler: A #CoglEuler
|
||||
*
|
||||
* Initializes @matrix from a #CoglEuler rotation.
|
||||
*/
|
||||
void
|
||||
cogl_matrix_init_from_euler (CoglMatrix *matrix,
|
||||
const CoglEuler *euler);
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
|
|
@ -546,6 +546,8 @@ CoglMatrix
|
|||
cogl_matrix_init_identity
|
||||
cogl_matrix_init_from_array
|
||||
cogl_matrix_init_translation
|
||||
cogl_matrix_init_from_quaternion
|
||||
cogl_matrix_init_from_euler
|
||||
cogl_matrix_copy
|
||||
cogl_matrix_equal
|
||||
cogl_matrix_free
|
||||
|
|
Loading…
Reference in a new issue