1
0
Fork 0

stb_image: use glib sized types

Instead of creating typedefs like uint8, uint16 and uint32 we now use
the glib sized typedefs in stb_image to avoid conflict with the uint8,
uint16 and uint32 typedefs on android.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
This commit is contained in:
Robert Bragg 2011-08-04 15:09:17 +01:00
parent b2964b6910
commit dd6935f129

View file

@ -65,6 +65,7 @@
on 'test' only check type, not whether we support this variant
*/
#include <glib.h>
#ifndef STBI_INCLUDE_STB_IMAGE_H
#define STBI_INCLUDE_STB_IMAGE_H
@ -327,12 +328,12 @@ extern int stbi_register_loader(stbi_loader *loader);
// define faster low-level operations (typically SIMD support)
#if STBI_SIMD
typedef void (*stbi_idct_8x8)(uint8 *out, int out_stride, short data[64], unsigned short *dequantize);
typedef void (*stbi_idct_8x8)(guint8 *out, int out_stride, short data[64], unsigned short *dequantize);
// compute an integer IDCT on "input"
// input[x] = data[x] * dequantize[x]
// write results to 'out': 64 samples, each run of 8 spaced by 'out_stride'
// CLAMP results to 0..255
typedef void (*stbi_YCbCr_to_RGB_run)(uint8 *output, uint8 const *y, uint8 const *cb, uint8 const *cr, int count, int step);
typedef void (*stbi_YCbCr_to_RGB_run)(guint8 *output, guint8 const *y, guint8 const *cb, guint8 const *cr, int count, int step);
// compute a conversion from YCbCr to RGB
// 'count' pixels
// write pixels to 'output'; each pixel is 'step' bytes (either 3 or 4; if 4, write '255' as 4th), order R,G,B
@ -377,16 +378,8 @@ extern void stbi_install_YCbCr_to_RGB(stbi_YCbCr_to_RGB_run func);
#endif
// implementation:
typedef unsigned char uint8;
typedef unsigned short uint16;
typedef signed short int16;
typedef unsigned int uint32;
typedef signed int int32;
typedef unsigned int uint;
// should produce compiler error if size is wrong
typedef unsigned char validate_uint32[sizeof(uint32)==4];
typedef unsigned char validate_guint32[sizeof(guint32)==4];
#if defined(STBI_NO_STDIO) && !defined(STBI_NO_WRITE)
#define STBI_NO_WRITE
@ -628,13 +621,13 @@ enum
typedef struct
{
uint32 img_x, img_y;
guint32 img_x, img_y;
int img_n, img_out_n;
#ifndef STBI_NO_STDIO
FILE *img_file;
#endif
uint8 *img_buffer, *img_buffer_end;
guint8 *img_buffer, *img_buffer_end;
} stbi;
#ifndef STBI_NO_STDIO
@ -644,13 +637,13 @@ static void start_file(stbi *s, FILE *f)
}
#endif
static void start_mem(stbi *s, uint8 const *buffer, int len)
static void start_mem(stbi *s, guint8 const *buffer, int len)
{
#ifndef STBI_NO_STDIO
s->img_file = NULL;
#endif
s->img_buffer = (uint8 *) buffer;
s->img_buffer_end = (uint8 *) buffer+len;
s->img_buffer = (guint8 *) buffer;
s->img_buffer_end = (guint8 *) buffer+len;
}
__forceinline static int get8(stbi *s)
@ -675,9 +668,9 @@ __forceinline static int at_eof(stbi *s)
return s->img_buffer >= s->img_buffer_end;
}
__forceinline static uint8 get8u(stbi *s)
__forceinline static guint8 get8u(stbi *s)
{
return (uint8) get8(s);
return (guint8) get8(s);
}
static void skip(stbi *s, int n)
@ -696,9 +689,9 @@ static int get16(stbi *s)
return (z << 8) + get8(s);
}
static uint32 get32(stbi *s)
static guint32 get32(stbi *s)
{
uint32 z = get16(s);
guint32 z = get16(s);
return (z << 16) + get16(s);
}
@ -708,9 +701,9 @@ static int get16le(stbi *s)
return z + (get8(s) << 8);
}
static uint32 get32le(stbi *s)
static guint32 get32le(stbi *s)
{
uint32 z = get16le(s);
guint32 z = get16le(s);
return z + (get16le(s) << 16);
}
@ -737,12 +730,12 @@ static void getn(stbi *s, stbi_uc *buffer, int n)
// assume data buffer is malloced, so malloc a new one and free that one
// only failure mode is malloc failing
static uint8 compute_y(int r, int g, int b)
static guint8 compute_y(int r, int g, int b)
{
return (uint8) (((r*77) + (g*150) + (29*b)) >> 8);
return (guint8) (((r*77) + (g*150) + (29*b)) >> 8);
}
static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, uint x, uint y)
static unsigned char *convert_format(unsigned char *data, int img_n, int req_comp, guint x, guint y)
{
int i,j;
unsigned char *good;
@ -863,11 +856,11 @@ static stbi_uc *hdr_to_ldr(float *data, int x, int y, int comp)
typedef struct
{
uint8 fast[1 << FAST_BITS];
guint8 fast[1 << FAST_BITS];
// weirdly, repacking this into AoS is a 10% speed loss, instead of a win
uint16 code[256];
uint8 values[256];
uint8 size[257];
guint16 code[256];
guint8 values[256];
guint8 size[257];
unsigned int maxcode[18];
int delta[17]; // old 'firstsymbol' - old 'firstcode'
} huffman;
@ -880,7 +873,7 @@ typedef struct
stbi s;
huffman huff_dc[4];
huffman huff_ac[4];
uint8 dequant[4][64];
guint8 dequant[4][64];
// sizes for components, interleaved MCUs
int img_h_max, img_v_max;
@ -897,12 +890,12 @@ typedef struct
int dc_pred;
int x,y,w2,h2;
uint8 *data;
guint8 *data;
void *raw_data;
uint8 *linebuf;
guint8 *linebuf;
} img_comp[4];
uint32 code_buffer; // jpeg entropy-coded buffer
guint32 code_buffer; // jpeg entropy-coded buffer
int code_bits; // number of valid bits
unsigned char marker; // marker seen while filling entropy buffer
int nomore; // flag if we saw a marker so must stop
@ -917,7 +910,7 @@ static int build_huffman(huffman *h, int *count)
// build size list for each symbol (from JPEG spec)
for (i=0; i < 16; ++i)
for (j=0; j < count[i]; ++j)
h->size[k++] = (uint8) (i+1);
h->size[k++] = (guint8) (i+1);
h->size[k] = 0;
// compute actual symbols (from jpeg spec)
@ -928,7 +921,7 @@ static int build_huffman(huffman *h, int *count)
h->delta[j] = k - code;
if (h->size[k] == j) {
while (h->size[k] == j)
h->code[k++] = (uint16) (code++);
h->code[k++] = (guint16) (code++);
if (code-1 >= (1 << j)) return e("bad code lengths","Corrupt JPEG");
}
// compute largest code + 1 for this size, preshifted as needed later
@ -945,7 +938,7 @@ static int build_huffman(huffman *h, int *count)
int c = h->code[i] << (FAST_BITS-s);
int m = 1 << (FAST_BITS-s);
for (j=0; j < m; ++j) {
h->fast[c+j] = (uint8) i;
h->fast[c+j] = (guint8) i;
}
}
}
@ -970,7 +963,7 @@ static void grow_buffer_unsafe(jpeg *j)
}
// (1 << n) - 1
static uint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
static guint32 bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
// decode a jpeg huffman value from the bitstream
__forceinline static int decode(jpeg *j, huffman *h)
@ -1042,7 +1035,7 @@ __forceinline static int extend_receive(jpeg *j, int n)
// given a value that's at position X in the zigzag stream,
// where does it appear in the 8x8 matrix coded as row-major?
static uint8 dezigzag[64+15] =
static guint8 dezigzag[64+15] =
{
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
@ -1093,7 +1086,7 @@ static int decode_block(jpeg *j, short data[64], huffman *hdc, huffman *hac, int
}
// take a -128..127 value and clamp it and convert to 0..255
__forceinline static uint8 clamp(int x)
__forceinline static guint8 clamp(int x)
{
x += 128;
// trick to use a single test to catch both cases
@ -1101,7 +1094,7 @@ __forceinline static uint8 clamp(int x)
if (x < 0) return 0;
if (x > 255) return 255;
}
return (uint8) x;
return (guint8) x;
}
#define f2f(x) (int) (((x) * 4096 + 0.5))
@ -1147,10 +1140,10 @@ __forceinline static uint8 clamp(int x)
#if !STBI_SIMD
// .344 seconds on 3*anemones.jpg
static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequantize)
static void idct_block(guint8 *out, int out_stride, short data[64], guint8 *dequantize)
{
int i,val[64],*v=val;
uint8 *o,*dq = dequantize;
guint8 *o,*dq = dequantize;
short *d = data;
// columns
@ -1199,10 +1192,10 @@ static void idct_block(uint8 *out, int out_stride, short data[64], uint8 *dequan
}
}
#else
static void idct_block(uint8 *out, int out_stride, short data[64], unsigned short *dequantize)
static void idct_block(guint8 *out, int out_stride, short data[64], unsigned short *dequantize)
{
int i,val[64],*v=val;
uint8 *o;
guint8 *o;
unsigned short *dq = dequantize;
short *d = data;
@ -1263,9 +1256,9 @@ extern void stbi_install_idct(stbi_idct_8x8 func)
// if there's a pending marker from the entropy stream, return that
// otherwise, fetch from the stream and get a marker. if there's no
// marker, return 0xff, which is never a valid marker value
static uint8 get_marker(jpeg *j)
static guint8 get_marker(jpeg *j)
{
uint8 x;
guint8 x;
if (j->marker != MARKER_none) { x = j->marker; j->marker = MARKER_none; return x; }
x = get8u(&j->s);
if (x != 0xff) return MARKER_none;
@ -1400,7 +1393,7 @@ static int process_marker(jpeg *z, int m)
case 0xC4: // DHT - define huffman table
L = get16(&z->s)-2;
while (L > 0) {
uint8 *v;
guint8 *v;
int sizes[16],i,m=0;
int q = get8(&z->s);
int tc = q >> 4;
@ -1523,7 +1516,7 @@ static int process_frame_header(jpeg *z, int scan)
return e("outofmem", "Out of memory");
}
// align blocks for installable-idct using mmx/sse
z->img_comp[i].data = (uint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
z->img_comp[i].data = (guint8*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
z->img_comp[i].linebuf = NULL;
}
@ -1578,17 +1571,17 @@ static int decode_jpeg_image(jpeg *j)
// static jfif-centered resampling (across block boundaries)
typedef uint8 *(*resample_row_func)(uint8 *out, uint8 *in0, uint8 *in1,
typedef guint8 *(*resample_row_func)(guint8 *out, guint8 *in0, guint8 *in1,
int w, int hs);
#define div4(x) ((uint8) ((x) >> 2))
#define div4(x) ((guint8) ((x) >> 2))
static uint8 *resample_row_1(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
static guint8 *resample_row_1(guint8 *out, guint8 *in_near, guint8 *in_far, int w, int hs)
{
return in_near;
}
static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
static guint8* resample_row_v_2(guint8 *out, guint8 *in_near, guint8 *in_far, int w, int hs)
{
// need to generate two samples vertically for every one in input
int i;
@ -1597,11 +1590,11 @@ static uint8* resample_row_v_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w,
return out;
}
static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
static guint8* resample_row_h_2(guint8 *out, guint8 *in_near, guint8 *in_far, int w, int hs)
{
// need to generate two samples horizontally for every one in input
int i;
uint8 *input = in_near;
guint8 *input = in_near;
if (w == 1) {
// if only one sample, can't do any interpolation
out[0] = out[1] = input[0];
@ -1620,9 +1613,9 @@ static uint8* resample_row_h_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w
return out;
}
#define div16(x) ((uint8) ((x) >> 4))
#define div16(x) ((guint8) ((x) >> 4))
static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
static guint8 *resample_row_hv_2(guint8 *out, guint8 *in_near, guint8 *in_far, int w, int hs)
{
// need to generate 2x2 samples for every one in input
int i,t0,t1;
@ -1643,7 +1636,7 @@ static uint8 *resample_row_hv_2(uint8 *out, uint8 *in_near, uint8 *in_far, int w
return out;
}
static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, int w, int hs)
static guint8 *resample_row_generic(guint8 *out, guint8 *in_near, guint8 *in_far, int w, int hs)
{
// resample with nearest-neighbor
int i,j;
@ -1657,7 +1650,7 @@ static uint8 *resample_row_generic(uint8 *out, uint8 *in_near, uint8 *in_far, in
// 0.38 seconds on 3*anemones.jpg (0.25 with processor = Pro)
// VC6 without processor=Pro is generating multiple LEAs per multiply!
static void YCbCr_to_RGB_row(uint8 *out, const uint8 *y, const uint8 *pcb, const uint8 *pcr, int count, int step)
static void YCbCr_to_RGB_row(guint8 *out, const guint8 *y, const guint8 *pcb, const guint8 *pcr, int count, int step)
{
int i;
for (i=0; i < count; ++i) {
@ -1674,9 +1667,9 @@ static void YCbCr_to_RGB_row(uint8 *out, const uint8 *y, const uint8 *pcb, const
if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
out[0] = (uint8)r;
out[1] = (uint8)g;
out[2] = (uint8)b;
out[0] = (guint8)r;
out[1] = (guint8)g;
out[2] = (guint8)b;
out[3] = 255;
out += step;
}
@ -1711,14 +1704,14 @@ static void cleanup_jpeg(jpeg *j)
typedef struct
{
resample_row_func resample;
uint8 *line0,*line1;
guint8 *line0,*line1;
int hs,vs; // expansion factor in each axis
int w_lores; // horizontal pixels pre-expansion
int ystep; // how far through vertical expansion we are
int ypos; // which pre-expansion row we're on
} stbi_resample;
static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp)
static guint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int req_comp)
{
int n, decode_n;
// validate req_comp
@ -1739,9 +1732,9 @@ static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int re
// resample and color-convert
{
int k;
uint i,j;
uint8 *output;
uint8 *coutput[4];
guint i,j;
guint8 *output;
guint8 *coutput[4];
stbi_resample res_comp[4];
@ -1750,7 +1743,7 @@ static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int re
// allocate line buffer big enough for upsampling off the edges
// with upsample factor of 4
z->img_comp[k].linebuf = (uint8 *) malloc(z->s.img_x + 3);
z->img_comp[k].linebuf = (guint8 *) malloc(z->s.img_x + 3);
if (!z->img_comp[k].linebuf) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); }
r->hs = z->img_h_max / z->img_comp[k].h;
@ -1768,12 +1761,12 @@ static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int re
}
// can't error after this so, this is safe
output = (uint8 *) malloc(n * z->s.img_x * z->s.img_y + 1);
output = (guint8 *) malloc(n * z->s.img_x * z->s.img_y + 1);
if (!output) { cleanup_jpeg(z); return epuc("outofmem", "Out of memory"); }
// now go ahead and resample
for (j=0; j < z->s.img_y; ++j) {
uint8 *out = output + n * z->s.img_x * j;
guint8 *out = output + n * z->s.img_x * j;
for (k=0; k < decode_n; ++k) {
stbi_resample *r = &res_comp[k];
int y_bot = r->ystep >= (r->vs >> 1);
@ -1789,7 +1782,7 @@ static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int re
}
}
if (n >= 3) {
uint8 *y = coutput[0];
guint8 *y = coutput[0];
if (z->s.img_n == 3) {
#if STBI_SIMD
stbi_YCbCr_installed(out, y, coutput[1], coutput[2], z->s.img_x, n);
@ -1803,7 +1796,7 @@ static uint8 *load_jpeg_image(jpeg *z, int *out_x, int *out_y, int *comp, int re
out += n;
}
} else {
uint8 *y = coutput[0];
guint8 *y = coutput[0];
if (n == 1)
for (i=0; i < z->s.img_x; ++i) out[i] = y[i];
else
@ -1886,12 +1879,12 @@ extern int stbi_jpeg_info_from_memory(stbi_uc const *buffer, int len, int *
// (jpegs packs from left, zlib from right, so can't share code)
typedef struct
{
uint16 fast[1 << ZFAST_BITS];
uint16 firstcode[16];
guint16 fast[1 << ZFAST_BITS];
guint16 firstcode[16];
int maxcode[17];
uint16 firstsymbol[16];
uint8 size[288];
uint16 value[288];
guint16 firstsymbol[16];
guint8 size[288];
guint16 value[288];
} zhuffman;
__forceinline static int bitreverse16(int n)
@ -1911,7 +1904,7 @@ __forceinline static int bit_reverse(int v, int bits)
return bitreverse16(v) >> (16-bits);
}
static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num)
static int zbuild_huffman(zhuffman *z, guint8 *sizelist, int num)
{
int i,k=0;
int code, next_code[16], sizes[17];
@ -1927,8 +1920,8 @@ static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num)
code = 0;
for (i=1; i < 16; ++i) {
next_code[i] = code;
z->firstcode[i] = (uint16) code;
z->firstsymbol[i] = (uint16) k;
z->firstcode[i] = (guint16) code;
z->firstsymbol[i] = (guint16) k;
code = (code + sizes[i]);
if (sizes[i])
if (code-1 >= (1 << i)) return e("bad codelengths","Corrupt JPEG");
@ -1941,12 +1934,12 @@ static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num)
int s = sizelist[i];
if (s) {
int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
z->size[c] = (uint8)s;
z->value[c] = (uint16)i;
z->size[c] = (guint8)s;
z->value[c] = (guint16)i;
if (s <= ZFAST_BITS) {
int k = bit_reverse(next_code[s],s);
while (k < (1 << ZFAST_BITS)) {
z->fast[k] = (uint16) c;
z->fast[k] = (guint16) c;
k += (1 << s);
}
}
@ -1964,9 +1957,9 @@ static int zbuild_huffman(zhuffman *z, uint8 *sizelist, int num)
typedef struct
{
uint8 *zbuffer, *zbuffer_end;
guint8 *zbuffer, *zbuffer_end;
int num_bits;
uint32 code_buffer;
guint32 code_buffer;
char *zout;
char *zout_start;
@ -2068,7 +2061,7 @@ static int parse_huffman_block(zbuf *a)
if (a->zout >= a->zout_end) if (!expand(a, 1)) return 0;
*a->zout++ = (char) z;
} else {
uint8 *p;
guint8 *p;
int len,dist;
if (z == 256) return 1;
z -= 257;
@ -2080,7 +2073,7 @@ static int parse_huffman_block(zbuf *a)
if (dist_extra[z]) dist += zreceive(a, dist_extra[z]);
if (a->zout - a->zout_start < dist) return e("bad dist","Corrupt PNG");
if (a->zout + len > a->zout_end) if (!expand(a, len)) return 0;
p = (uint8 *) (a->zout - dist);
p = (guint8 *) (a->zout - dist);
while (len--)
*a->zout++ = *p++;
}
@ -2089,10 +2082,10 @@ static int parse_huffman_block(zbuf *a)
static int compute_huffman_codes(zbuf *a)
{
static uint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
static guint8 length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
zhuffman z_codelength;
uint8 lencodes[286+32+137];//padding for maximum single op
uint8 codelength_sizes[19];
guint8 lencodes[286+32+137];//padding for maximum single op
guint8 codelength_sizes[19];
int i,n;
int hlit = zreceive(a,5) + 257;
@ -2102,7 +2095,7 @@ static int compute_huffman_codes(zbuf *a)
memset(codelength_sizes, 0, sizeof(codelength_sizes));
for (i=0; i < hclen; ++i) {
int s = zreceive(a,3);
codelength_sizes[length_dezigzag[i]] = (uint8) s;
codelength_sizes[length_dezigzag[i]] = (guint8) s;
}
if (!zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
@ -2111,7 +2104,7 @@ static int compute_huffman_codes(zbuf *a)
int c = zhuffman_decode(a, &z_codelength);
assert(c >= 0 && c < 19);
if (c < 16)
lencodes[n++] = (uint8) c;
lencodes[n++] = (guint8) c;
else if (c == 16) {
c = zreceive(a,2)+3;
memset(lencodes+n, lencodes[n-1], c);
@ -2135,21 +2128,21 @@ static int compute_huffman_codes(zbuf *a)
static int parse_uncompressed_block(zbuf *a)
{
uint8 header[4];
guint8 header[4];
int len,nlen,k;
if (a->num_bits & 7)
zreceive(a, a->num_bits & 7); // discard
// drain the bit-packed data into header
k = 0;
while (a->num_bits > 0) {
header[k++] = (uint8) (a->code_buffer & 255); // wtf this warns?
header[k++] = (guint8) (a->code_buffer & 255); // wtf this warns?
a->code_buffer >>= 8;
a->num_bits -= 8;
}
assert(a->num_bits == 0);
// now fill header the normal way
while (k < 4)
header[k++] = (uint8) zget8(a);
header[k++] = (guint8) zget8(a);
len = header[1] * 256 + header[0];
nlen = header[3] * 256 + header[2];
if (nlen != (len ^ 0xffff)) return e("zlib corrupt","Corrupt PNG");
@ -2176,7 +2169,7 @@ static int parse_zlib_header(zbuf *a)
}
// @TODO: should statically initialize these for optimal thread safety
static uint8 default_length[288], default_distance[32];
static guint8 default_length[288], default_distance[32];
static void init_defaults(void)
{
int i; // use <= to match clearly with spec
@ -2235,8 +2228,8 @@ char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial
zbuf a;
char *p = (char *) malloc(initial_size);
if (p == NULL) return NULL;
a.zbuffer = (uint8 *) buffer;
a.zbuffer_end = (uint8 *) buffer + len;
a.zbuffer = (guint8 *) buffer;
a.zbuffer_end = (guint8 *) buffer + len;
if (do_zlib(&a, p, initial_size, 1, 1)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
@ -2254,8 +2247,8 @@ char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen)
int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen)
{
zbuf a;
a.zbuffer = (uint8 *) ibuffer;
a.zbuffer_end = (uint8 *) ibuffer + ilen;
a.zbuffer = (guint8 *) ibuffer;
a.zbuffer_end = (guint8 *) ibuffer + ilen;
if (do_zlib(&a, obuffer, olen, 0, 1))
return (int) (a.zout - a.zout_start);
else
@ -2267,8 +2260,8 @@ char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen)
zbuf a;
char *p = (char *) malloc(16384);
if (p == NULL) return NULL;
a.zbuffer = (uint8 *) buffer;
a.zbuffer_end = (uint8 *) buffer+len;
a.zbuffer = (guint8 *) buffer;
a.zbuffer_end = (guint8 *) buffer+len;
if (do_zlib(&a, p, 16384, 1, 0)) {
if (outlen) *outlen = (int) (a.zout - a.zout_start);
return a.zout_start;
@ -2281,8 +2274,8 @@ char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen)
int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen)
{
zbuf a;
a.zbuffer = (uint8 *) ibuffer;
a.zbuffer_end = (uint8 *) ibuffer + ilen;
a.zbuffer = (guint8 *) ibuffer;
a.zbuffer_end = (guint8 *) ibuffer + ilen;
if (do_zlib(&a, obuffer, olen, 0, 0))
return (int) (a.zout - a.zout_start);
else
@ -2302,8 +2295,8 @@ int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffe
typedef struct
{
uint32 length;
uint32 type;
guint32 length;
guint32 type;
} chunk;
#define PNG_TYPE(a,b,c,d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
@ -2318,7 +2311,7 @@ static chunk get_chunk_header(stbi *s)
static int check_png_header(stbi *s)
{
static uint8 png_sig[8] = { 137,80,78,71,13,10,26,10 };
static guint8 png_sig[8] = { 137,80,78,71,13,10,26,10 };
int i;
for (i=0; i < 8; ++i)
if (get8(s) != png_sig[i]) return e("bad png sig","Not a PNG");
@ -2328,7 +2321,7 @@ static int check_png_header(stbi *s)
typedef struct
{
stbi s;
uint8 *idata, *expanded, *out;
guint8 *idata, *expanded, *out;
} png;
@ -2337,7 +2330,7 @@ enum {
F_avg_first, F_paeth_first,
};
static uint8 first_row_filter[5] =
static guint8 first_row_filter[5] =
{
F_none, F_sub, F_none, F_avg_first, F_paeth_first
};
@ -2354,15 +2347,15 @@ static int paeth(int a, int b, int c)
}
// create the png data from post-deflated data
static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, uint32 x, uint32 y)
static int create_png_image_raw(png *a, guint8 *raw, guint32 raw_len, int out_n, guint32 x, guint32 y)
{
stbi *s = &a->s;
uint32 i,j,stride = x*out_n;
guint32 i,j,stride = x*out_n;
int k;
int img_n = s->img_n; // copy it into a local for later
assert(out_n == s->img_n || out_n == s->img_n+1);
if (stbi_png_partial) y = 1;
a->out = (uint8 *) malloc(x * y * out_n);
a->out = (guint8 *) malloc(x * y * out_n);
if (!a->out) return e("outofmem", "Out of memory");
if (!stbi_png_partial) {
if (s->img_x == x && s->img_y == y)
@ -2371,8 +2364,8 @@ static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, u
if (raw_len < (img_n * x + 1) * y) return e("not enough pixels","Corrupt PNG");
}
for (j=0; j < y; ++j) {
uint8 *cur = a->out + stride*j;
uint8 *prior = cur - stride;
guint8 *cur = a->out + stride*j;
guint8 *prior = cur - stride;
int filter = *raw++;
if (filter > 4) return e("invalid filter","Corrupt PNG");
// if first row, use special filter that doesn't sample previous row
@ -2384,7 +2377,7 @@ static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, u
case F_sub : cur[k] = raw[k]; break;
case F_up : cur[k] = raw[k] + prior[k]; break;
case F_avg : cur[k] = raw[k] + (prior[k]>>1); break;
case F_paeth : cur[k] = (uint8) (raw[k] + paeth(0,prior[k],0)); break;
case F_paeth : cur[k] = (guint8) (raw[k] + paeth(0,prior[k],0)); break;
case F_avg_first : cur[k] = raw[k]; break;
case F_paeth_first: cur[k] = raw[k]; break;
}
@ -2404,9 +2397,9 @@ static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, u
CASE(F_sub) cur[k] = raw[k] + cur[k-img_n]; break;
CASE(F_up) cur[k] = raw[k] + prior[k]; break;
CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-img_n])>>1); break;
CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break;
CASE(F_paeth) cur[k] = (guint8) (raw[k] + paeth(cur[k-img_n],prior[k],prior[k-img_n])); break;
CASE(F_avg_first) cur[k] = raw[k] + (cur[k-img_n] >> 1); break;
CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-img_n],0,0)); break;
CASE(F_paeth_first) cur[k] = (guint8) (raw[k] + paeth(cur[k-img_n],0,0)); break;
}
#undef CASE
} else {
@ -2420,9 +2413,9 @@ static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, u
CASE(F_sub) cur[k] = raw[k] + cur[k-out_n]; break;
CASE(F_up) cur[k] = raw[k] + prior[k]; break;
CASE(F_avg) cur[k] = raw[k] + ((prior[k] + cur[k-out_n])>>1); break;
CASE(F_paeth) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break;
CASE(F_paeth) cur[k] = (guint8) (raw[k] + paeth(cur[k-out_n],prior[k],prior[k-out_n])); break;
CASE(F_avg_first) cur[k] = raw[k] + (cur[k-out_n] >> 1); break;
CASE(F_paeth_first) cur[k] = (uint8) (raw[k] + paeth(cur[k-out_n],0,0)); break;
CASE(F_paeth_first) cur[k] = (guint8) (raw[k] + paeth(cur[k-out_n],0,0)); break;
}
#undef CASE
}
@ -2430,9 +2423,9 @@ static int create_png_image_raw(png *a, uint8 *raw, uint32 raw_len, int out_n, u
return 1;
}
static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n, int interlaced)
static int create_png_image(png *a, guint8 *raw, guint32 raw_len, int out_n, int interlaced)
{
uint8 *final;
guint8 *final;
int p;
int save;
if (!interlaced)
@ -2441,7 +2434,7 @@ static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n, int i
stbi_png_partial = 0;
// de-interlacing
final = (uint8 *) malloc(a->s.img_x * a->s.img_y * out_n);
final = (guint8 *) malloc(a->s.img_x * a->s.img_y * out_n);
for (p=0; p < 7; ++p) {
int xorig[] = { 0,4,0,2,0,1,0 };
int yorig[] = { 0,0,4,0,2,0,1 };
@ -2471,11 +2464,11 @@ static int create_png_image(png *a, uint8 *raw, uint32 raw_len, int out_n, int i
return 1;
}
static int compute_transparency(png *z, uint8 tc[3], int out_n)
static int compute_transparency(png *z, guint8 tc[3], int out_n)
{
stbi *s = &z->s;
uint32 i, pixel_count = s->img_x * s->img_y;
uint8 *p = z->out;
guint32 i, pixel_count = s->img_x * s->img_y;
guint8 *p = z->out;
// compute color-based transparency, assuming we've
// already got 255 as the alpha value in the output
@ -2496,12 +2489,12 @@ static int compute_transparency(png *z, uint8 tc[3], int out_n)
return 1;
}
static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n)
static int expand_palette(png *a, guint8 *palette, int len, int pal_img_n)
{
uint32 i, pixel_count = a->s.img_x * a->s.img_y;
uint8 *p, *temp_out, *orig = a->out;
guint32 i, pixel_count = a->s.img_x * a->s.img_y;
guint8 *p, *temp_out, *orig = a->out;
p = (uint8 *) malloc(pixel_count * pal_img_n);
p = (guint8 *) malloc(pixel_count * pal_img_n);
if (p == NULL) return e("outofmem", "Out of memory");
// between here and free(out) below, exitting would leak
@ -2532,9 +2525,9 @@ static int expand_palette(png *a, uint8 *palette, int len, int pal_img_n)
static int parse_png_file(png *z, int scan, int req_comp)
{
uint8 palette[1024], pal_img_n=0;
uint8 has_trans=0, tc[3];
uint32 ioff=0, idata_limit=0, i, pal_len=0;
guint8 palette[1024], pal_img_n=0;
guint8 has_trans=0, tc[3];
guint32 ioff=0, idata_limit=0, i, pal_len=0;
int first=1,k,interlace=0;
stbi *s = &z->s;
@ -2598,10 +2591,10 @@ static int parse_png_file(png *z, int scan, int req_comp)
palette[i*4+3] = get8u(s);
} else {
if (!(s->img_n & 1)) return e("tRNS with alpha","Corrupt PNG");
if (c.length != (uint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG");
if (c.length != (guint32) s->img_n*2) return e("bad tRNS len","Corrupt PNG");
has_trans = 1;
for (k=0; k < s->img_n; ++k)
tc[k] = (uint8) get16(s); // non 8-bit images will be larger
tc[k] = (guint8) get16(s); // non 8-bit images will be larger
}
break;
}
@ -2610,11 +2603,11 @@ static int parse_png_file(png *z, int scan, int req_comp)
if (pal_img_n && !pal_len) return e("no PLTE","Corrupt PNG");
if (scan == SCAN_header) { s->img_n = pal_img_n; return 1; }
if (ioff + c.length > idata_limit) {
uint8 *p;
guint8 *p;
if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
while (ioff + c.length > idata_limit)
idata_limit *= 2;
p = (uint8 *) realloc(z->idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory");
p = (guint8 *) realloc(z->idata, idata_limit); if (p == NULL) return e("outofmem", "Out of memory");
z->idata = p;
}
#ifndef STBI_NO_STDIO
@ -2633,10 +2626,10 @@ static int parse_png_file(png *z, int scan, int req_comp)
}
case PNG_TYPE('I','E','N','D'): {
uint32 raw_len;
guint32 raw_len;
if (scan != SCAN_load) return 1;
if (z->idata == NULL) return e("no IDAT","Corrupt PNG");
z->expanded = (uint8 *) stbi_zlib_decode_malloc((char *) z->idata, ioff, (int *) &raw_len);
z->expanded = (guint8 *) stbi_zlib_decode_malloc((char *) z->idata, ioff, (int *) &raw_len);
if (z->expanded == NULL) return 0; // zlib should set error
free(z->idata); z->idata = NULL;
if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
@ -2664,10 +2657,10 @@ static int parse_png_file(png *z, int scan, int req_comp)
#ifndef STBI_NO_FAILURE_STRINGS
// not threadsafe
static char invalid_chunk[] = "XXXX chunk not known";
invalid_chunk[0] = (uint8) (c.type >> 24);
invalid_chunk[1] = (uint8) (c.type >> 16);
invalid_chunk[2] = (uint8) (c.type >> 8);
invalid_chunk[3] = (uint8) (c.type >> 0);
invalid_chunk[0] = (guint8) (c.type >> 24);
invalid_chunk[1] = (guint8) (c.type >> 16);
invalid_chunk[2] = (guint8) (c.type >> 8);
invalid_chunk[3] = (guint8) (c.type >> 0);
#endif
return e(invalid_chunk, "PNG not supported: unknown chunk type");
}
@ -2851,7 +2844,7 @@ static int shiftsigned(int v, int shift, int bits)
static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp)
{
uint8 *out;
guint8 *out;
unsigned int mr=0,mg=0,mb=0,ma=0, fake_a=0;
stbi_uc pal[256][4];
int psize=0,i,j,compress=0,width;
@ -3011,7 +3004,7 @@ static stbi_uc *bmp_load(stbi *s, int *x, int *y, int *comp, int req_comp)
}
} else {
for (i=0; i < (int) s->img_x; ++i) {
uint32 v = (bpp == 16 ? get16le(s) : get32le(s));
guint32 v = (bpp == 16 ? get16le(s) : get32le(s));
int a;
out[z++] = shiftsigned(v & mr, rshift, rcount);
out[z++] = shiftsigned(v & mg, gshift, gcount);
@ -3392,7 +3385,7 @@ static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp)
int channelCount, compression;
int channel, i, count, len;
int w,h;
uint8 *out;
guint8 *out;
// Check identifier
if (get32(s) != 0x38425053) // "8BPS"
@ -3472,7 +3465,7 @@ static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp)
// Read the RLE data by channel.
for (channel = 0; channel < 4; channel++) {
uint8 *p;
guint8 *p;
p = out+channel;
if (channel >= channelCount) {
@ -3495,7 +3488,7 @@ static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp)
len--;
}
} else if (len > 128) {
uint32 val;
guint32 val;
// Next -len+1 bytes in the dest are replicated from next source byte.
// (Interpret len as a negative 8-bit int.)
len ^= 0x0FF;
@ -3518,7 +3511,7 @@ static stbi_uc *psd_load(stbi *s, int *x, int *y, int *comp, int req_comp)
// Read the data by channel.
for (channel = 0; channel < 4; channel++) {
uint8 *p;
guint8 *p;
p = out + channel;
if (channel > channelCount) {
@ -3785,16 +3778,16 @@ float *stbi_hdr_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y,
#ifndef STBI_NO_WRITE
static void write8(FILE *f, int x) { uint8 z = (uint8) x; fwrite(&z,1,1,f); }
static void write8(FILE *f, int x) { guint8 z = (guint8) x; fwrite(&z,1,1,f); }
static void writefv(FILE *f, char *fmt, va_list v)
{
while (*fmt) {
switch (*fmt++) {
case ' ': break;
case '1': { uint8 x = va_arg(v, int); write8(f,x); break; }
case '2': { int16 x = va_arg(v, int); write8(f,x); write8(f,x>>8); break; }
case '4': { int32 x = va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; }
case '1': { guint8 x = va_arg(v, int); write8(f,x); break; }
case '2': { gint16 x = va_arg(v, int); write8(f,x); write8(f,x>>8); break; }
case '4': { gint32 x = va_arg(v, int); write8(f,x); write8(f,x>>8); write8(f,x>>16); write8(f,x>>24); break; }
default:
assert(0);
va_end(v);
@ -3813,8 +3806,8 @@ static void writef(FILE *f, char *fmt, ...)
static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad)
{
uint8 bg[3] = { 255, 0, 255}, px[3];
uint32 zero = 0;
guint8 bg[3] = { 255, 0, 255}, px[3];
guint32 zero = 0;
int i,j,k, j_end;
if (vdir < 0)
@ -3824,7 +3817,7 @@ static void write_pixels(FILE *f, int rgb_dir, int vdir, int x, int y, int comp,
for (; j != j_end; j += vdir) {
for (i=0; i < x; ++i) {
uint8 *d = (uint8 *) data + (j*x+i)*comp;
guint8 *d = (guint8 *) data + (j*x+i)*comp;
if (write_alpha < 0)
fwrite(&d[comp-1], 1, 1, f);
switch (comp) {