Now that MetaShapedTexture is a ClutterContent implemetation that
is aware of its own buffer scale, it is possible to simplify the
event translation routines.
Set the geometry scale in MetaSurfaceActor, and stop adjusting the
surface scale when translating points. Also remove the now obsoleted
meta_wayland_actor_surface_calculate_scale() function.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
MetaWindowActor is the compositor-side representative of a
MetaWindow. Specifically it represents the geometry of the
window under Clutter scene graph. MetaWindowActors are backed
by MetaSurfaceActors, that represent the windowing system's
surfaces themselves. Naturally, these surfaces have textures
with the pixel content of the clients associated with them.
These textures are represented by MetaShapedTexture.
MetaShapedTextures are currently implemented as ClutterActor
subclasses that override the paint function to paint the
textures it holds.
Conceptually, however, Clutter has an abstraction layer for
contents of actors: ClutterContent. Which MetaShapedTexture
fits nicely, in fact.
Make MetaShapedTexture a ClutterContent implementation. This
forces a few changes in the stack:
* MetaShapedTexture now handles buffer scale.
* We now paint into ClutterPaintNode instead of the direct
framebuffer.
* Various pieces of Wayland code now use MetaSurfaceActor
instead of MetaShapedTexture.
* MetaSurfaceActorWayland doesn't override size negotiation
vfuncs anymore
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
Mutter needs to know which framebuffer the paint nodes will be
drawn into, and using cogl_get_draw_framebuffer() directly is
not an option since ClutterRootNode only pushes the draw fb
at draw time.
Expose clutter_paint_node_get_framebuffer().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/409
One of the man pages is now generated using asciidoc, which is missing
from the CI image. But given that this doesn't depend on mutter in any
way, just disable man pages in the gnome-shell build instead of updating
the Dockerfile.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/740
Incompressible events already pass through unmodified, so queuing them
just wasted time and memory.
We would however like to keep the ordering of events so we can only
apply this optimization if the queue is empty.
This reduces the input latency of incompressible events like touchpad
scrolling or drawing tablets by up to one frame. It also means the same
series of events now arrives at the client more smoothly and not in
bursts.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/711
Until now we would:
1. Enqueue modifier key event on the stage.
2. Update device modifier state.
3. Dequeue and process modifier key event with NEW device modifier state.
But if we consider optimizing out the queuing in some cases then there
will become a problem:
1. Process modifier key event with OLD device modifier state.
2. Update device modifier state.
To correct the above we now do:
1. Update device modifier state.
2. Queue/process modifier key event with NEW device modifier state.
It appears commit dd940a71 which introduced the old behaviour was correct
in the need to update the device modifier state, but is at least no longer
correct (if it ever was) that it should be done after queuing the event.
If queuing is working, as it is right now, then it makes no difference
whether the device modifier state is updated before or after. Because both
cases will come before the dequeing and processing.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/711
Thanks to the now removed global/context grabs, we can move pointer and
keyboard grabs back home to where they belong.
While at it, also add handling of CLUTTER_TABLET_DEVICE devices to
`on_grab_actor_destroy` and `clutter_input_device_get_grabbed_actor`.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/536
With the addition of xauth support (commit a8984a81c), Xwayland would
rely only on the provided cookies for authentication.
As a result, running an Xclient from another VT (hence without the
XAUTHORITY environment variable set) would result in an access denied.
The same on X11 is granted because the local user is automatically
granted access to Xserver by the startup scripts.
Add the local user to xhost at startup on Xwayland so that the user can
still run a client by setting the DISPLAY as long as it's the same user
on the same host.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/735
If possible, GLib will try to use the va_marshaller to pass the signal
arguments, rather than unboxing into and out of a `GValue`. This is much
more performant and especially good for often-thrown signals.
The original bug even mentions Clutter performance issues as a drive to
implement the va_marshaller in GLib (see
https://bugzilla.gnome.org/show_bug.cgi?id=661140).
https://gitlab.gnome.org/GNOME/mutter/merge_requests/700
Some of the marshallers we generate in `clutter-marshal.list` are also
available in GLib, so we don't need to generate them ourselves. Even
more, by passing NULL to `g_signal_new` in these cases will actually
internally optimize this even more by also setting the valist
marshaller, which is a little bit faster than the regular marshalling
using `GValue` and libffi.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/700
A base type shouldn't know about sub types, so let MetaDisplay make
the correct choice of what type of MetaCompositor it should create. No
other semantical changes introduced.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/727
Introduce MetaCompositorX11, dealing with being a X11 compositor, and
MetaCompositorServer, being a compositor while also being the display
server itself, e.g. a Wayland display server.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/727
When double clicking to un-maximize an X11 window under Wayland, there
is a race between X11 and Wayland protocols and the X11 XConfigureWindow
may be processed by Xwayland before the button press event is forwarded
via the Wayland protocol.
As a result, the second click may reach another X11 window placed right
underneath in the X11 stack.
Make sure we do not forward the button press event to Wayland if it was
handled by the frame UI.
https://gitlab.gnome.org/GNOME/mutter/issues/88
This was introduced in:
commit 010d16f647
Author: Robert Bragg <robert@linux.intel.com>
Date: Tue Mar 6 03:21:30 2012 +0000
Adds initial GLES2 integration support
This makes it possible to integrate existing GLES2 code with
applications using Cogl as the rendering api.
That's maybe a reasonable thing for a standalone cogl to want, but our
cogl has only one consumer. So if we want additional rendering out of
our cogl layer, it makes more sense to just add that to cogl rather than
support clutter or mutter or the javascript bindings creating their own
GLES contexts.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/500
Add meta-kms and meta-monitor-manager-kms listener for the udev
device-removed signal and on this signal update the device state /
re-enumerate the monitors, so that the monitors properly get updated
to disconnected state on GPU removal.
We really should also have meta-backend-native remove the GPU itself
from our list of GPU objects. But that is more involved, see:
https://gitlab.gnome.org/GNOME/mutter/issues/710
This commit at least gets us to a point where we properly update the
list of monitors when a GPU gets unplugged; and where we no longer
crash the first time the user changes the monitor configuration after
a GPU was unplugged.
Specifically before this commit we would hit the first g_error () in
meta_renderer_native_create_view () as soon as some monitor
(re)configuration is done after a GPU was unplugged.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
drmModeGetConnector may fail and return NULL, this may happen when
a connector is removed underneath us (which can happen with e.g.
DP MST or GPU hot unplug).
Deal with this by skipping the connector when enumerating and by
assuming it is disconnected when checking its connection state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
drmModeGetCrtc may fail and return NULL. This will trigger when
meta_kms_crtc_update_state gets called from meta_kms_update_states_sync
after a GPU has been unplugged leading to a NULL pointer deref causing
a crash.
This commit fixes this by checking for NULL and clearing the current_state
when NULL is returned.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
Before this commit meta_kms_crtc_read_state was overwriting the
entire MetaKmsCrtcState struct stored in crtc->current_state including
the gamma (sub)struct.
This effectively zero-s the gamma struct each time before calling
read_gamma_state, setting the pointers where the previous gamma values
were stored to NULL without freeing the memory. Luckily this zero-ing
also sets gamma.size to 0, causing read_gamma_state to re-alloc the
arrays on each meta_kms_crtc_update_state call. But this does mean that
were leaking the old gamma arrays on each meta_kms_crtc_update_state call.
This commit fixes this by making meta_kms_crtc_read_state only overwrite
the other values in the MetaKmsCrtcState struct and leaving the gamma
sub-struct alone, this will make read_gamma_state correctly re-use the
gamma tables if the gamma table size is unchanged; or re-alloc them
(freeing the old ones) if the size has changed, fixing the memory leak.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
The "device-added" signal should use g_cclosure_marshal_VOID__OBJECT not
g_cclosure_marshal_VOID__VOID.
Instead of fixing this manually, simply replace the closure function for
both signals with NULL, glib will then automatically set the correct
va_marshaller.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/713
Some meta_later operations may happen across XWayland being shutdown,
that trigger MetaStackTracker queries for X11 XIDs. This crashes as
the MetaX11Display is already NULL.
Return a NULL window in that case, as in "unknown stack ID".
https://gitlab.gnome.org/GNOME/mutter/merge_requests/728
There may be cases where a X11 client does not spawn any X11 windows (eg.
simple clients like xinput --list, or xlsclients), in this case the Xwayland
server would remain running until X11 windows happen to come and go in the
future.
Firing the shutdown timeout on restart caters for this, and would be undone
if the client maps X11 windows.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/728
Where the prepare_auth_file() call is, it does create a new one on every
respawn of Xwayland. This is not benefitial, as the XAUTHORITY envvar is
already fixed in the session.
Only create the XAuthority file once, and reuse it on future Xwayland
respawns.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/728