1
0
Fork 0
Commit graph

14 commits

Author SHA1 Message Date
Robert Bragg
a0441778ad This re-licenses Cogl 1.18 under the MIT license
Since the Cogl 1.18 branch is actively maintained in parallel with the
master branch; this is a counter part to commit 1b83ef938fc16b which
re-licensed the master branch to use the MIT license.

This re-licensing is a follow up to the proposal that was sent to the
Cogl mailing list:
http://lists.freedesktop.org/archives/cogl/2013-December/001465.html

Note: there was a copyright assignment policy in place for Clutter (and
therefore Cogl which was part of Clutter at the time) until the 11th of
June 2010 and so we only checked the details after that point (commit
0bbf50f905)

For each file, authors were identified via this Git command:
$ git blame -p -C -C -C20 -M -M10  0bbf50f905..HEAD

We received blanket approvals for re-licensing all Red Hat and Collabora
contributions which reduced how many people needed to be contacted
individually:
- http://lists.freedesktop.org/archives/cogl/2013-December/001470.html
- http://lists.freedesktop.org/archives/cogl/2014-January/001536.html

Individual approval requests were sent to all the other identified authors
who all confirmed the re-license on the Cogl mailinglist:
http://lists.freedesktop.org/archives/cogl/2014-January

As well as updating the copyright header in all sources files, the
COPYING file has been updated to reflect the license change and also
document the other licenses used in Cogl such as the SGI Free Software
License B, version 2.0 and the 3-clause BSD license.

This patch was not simply cherry-picked from master; but the same
methodology was used to check the source files.
2014-02-22 02:02:53 +00:00
Robert Bragg
73e8a6d7ce Allow lazy texture storage allocation
Consistent with how we lazily allocate framebuffers this patch allows us
to instantiate textures but still specify constraints and requirements
before allocating storage so that we can be sure to allocate the most
appropriate/efficient storage.

This adds a cogl_texture_allocate() function that is analogous to
cogl_framebuffer_allocate() which can optionally be called to explicitly
allocate storage and catch any errors. If this function isn't used
explicitly then Cogl will implicitly ensure textures are allocated
before the storage is needed.

It is generally recommended to rely on lazy storage allocation or at
least perform explicit allocation as late as possible so Cogl can be
fully informed about the best way to allocate storage.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 1fa7c0f10a8a03043e3c75cb079a49625df098b7)

Note: This reverts the cogl_texture_rectangle_new_with_size API change
that dropped the CoglError argument and keeps the semantics of
allocating the texture immediately. This is because Mutter currently
uses this API so we will probably look at updating this later once
we have a corresponding Mutter patch prepared. The other API changes
were kept since they only affected experimental api.
2013-01-22 17:48:17 +00:00
Robert Bragg
5a814e386a texture: add width/height members to base CoglTexture
There was a lot of redundancy in how we tracked the width and height of
different texture types which is greatly simplified by adding width and
height members to CoglTexture directly and removing the get_width and
get_height vfuncs from CoglTextureVtable

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 3236e47723e4287d5e0023f29083521aeffc75dd)
2013-01-22 17:48:17 +00:00
Robert Bragg
8326c71b6b texture: rename texobj flush code as gl specific
This renames the set_filters and set_wrap_mode_parameters texture
virtual functions to gl_flush_legacy_texobj_filters and
gl_flush_legacy_texobj_wrap_modes respectively to clarify that they are
opengl driver specific and that they are only used to support the legacy
opengl apis for setting filters and wrap modes where the state is
associated with texture objects instead of being associated with sampler
objects.

This part of an effort to clearly delimit our abstraction over opengl so
that we can start to consider non-opengl backends for Cogl.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 6f78b8a613340d7c6b736e51a16c625f52154430)
2013-01-22 17:47:58 +00:00
Robert Bragg
54735dec84 Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.

Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.

Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.

So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.

Instead of gsize we now use size_t

For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-08-06 14:27:39 +01:00
Neil Roberts
6197e3abf3 Add constructors which take a CoglBitmap to all primitive textures
This adds public constructors which take a CoglBitmap to all primitive
texture types. This constructor should be considered the canonical
constructor for initializing the texture with data because it should
be possible to wrap any type of data in a CoglBitmap. Having at least
this single constructor avoids the need to have an explosion of
constructors such as new_from_data, new_from_pixel_buffer and
new_from_file etc.

The already available internal bitmap constructor for CoglTexture2D
has had its flags parameter removed under the assumption that flags do
not make sense for primitive textures. The meta constructor
cogl_texture_new_from_bitmap now just explicitly calls set_auto_mipmap
after constructing the texture depending on the value of the
COGL_TEXTURE_NO_AUTO_MIPMAP flag.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-04-05 13:47:32 +01:00
Robert Bragg
680f63a48c Remove all internal includes of cogl.h
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-20 23:12:45 +00:00
Neil Roberts
139421de19 object: Remove the type member of CoglObjectClass
Unlike in GObject the type number for a CoglObject is entirely an
internal implementation detail so there is no need to make a GQuark to
make it safe to export out of the library. Instead we can just
directly use a fixed pointer address as the identifier for the type.
This patch makes it use the address of the class struct of the
identifier. This should make it faster to do type checks because it
does not need to call a function every time it wants to get the type
number.

Reviewed-by: Robert Bragg <robert@linux.intel.com>
2012-01-27 17:18:32 +00:00
Robert Bragg
90f106117f texture: Make CoglTextureRectangle experimentally public
This exposes CoglTextureRectangle in the experimental cogl 2.0 api. For
now we just expose a single constructor;
cogl_texture_rectangle_new_with_size() but we can add more later.

This is part of going work to improve our texture apis with more
emphasis on providing low-level access to the varying semantics of
different texture types understood by the gpu instead of only trying to
present a lowest common denominator api.

CoglTextureRectangle is notably useful for never being restricted to
power of two sizes and for being sampled with non-normalized texture
coordinates which can be convenient for use a lookup tables in glsl due
to not needing separate uniforms for mapping normalized coordinates to
texels. Unlike CoglTexture2D though rectangle textures can't have a
mipmap and they only support the _CLAMP_TO_EDGE wrap mode.

Applications wanting to use CoglTextureRectangle should first check
cogl_has_feature (COGL_FEATURE_ID_TEXTURE_RECTANGLE).

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:02 +00:00
Robert Bragg
1d8fd64e1c meta-texture: This publicly exposes CoglMetaTexture
CoglMetaTexture is an interface for dealing with high level textures
that may be comprised of one or more low-level textures internally. The
interface allows the development of primitive drawing APIs that can draw
with high-level textures (such as atlas textures) even though the
GPU doesn't natively understand these texture types.

There is currently just one function that's part of this interface:
cogl_meta_texture_foreach_in_region() which allows an application to
resolve the internal, low-level textures of a high-level texture.
cogl_rectangle() uses this API for example so that it can easily emulate
the _REPEAT wrap mode for textures that the hardware can't natively
handle repeating of.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-11-01 12:03:01 +00:00
Robert Bragg
f80cb197a9 cogl: rename CoglMaterial -> CoglPipeline
This applies an API naming change that's been deliberated over for a
while now which is to rename CoglMaterial to CoglPipeline.

For now the new pipeline API is marked as experimental and public
headers continue to talk about materials not pipelines. The CoglMaterial
API is now maintained in terms of the cogl_pipeline API internally.
Currently this API is targeting Cogl 2.0 so we will have time to
integrate it properly with other upcoming Cogl 2.0 work.

The basic reasons for the rename are:
- That the term "material" implies to many people that they are
  constrained to fragment processing; perhaps as some kind of high-level
  texture abstraction.
    - In Clutter they get exposed by ClutterTexture actors which may be
      re-inforcing this misconception.
- When comparing how other frameworks use the term material, a material
  sometimes describes a multi-pass fragment processing technique which
  isn't the case in Cogl.
- In code, "CoglPipeline" will hopefully be a much more self documenting
  summary of what these objects represent; a full GPU pipeline
  configuration including, for example, vertex processing, fragment
  processing and blending.
- When considering the API documentation story, at some point we need a
  document introducing developers to how the "GPU pipeline" works so it
  should become intuitive that CoglPipeline maps back to that
  description of the GPU pipeline.
- This is consistent in terminology and concept to OpenGL 4's new
  pipeline object which is a container for program objects.

Note: The cogl-material.[ch] files have been renamed to
cogl-material-compat.[ch] because otherwise git doesn't seem to treat
the change as a moving the old cogl-material.c->cogl-pipeline.c and so
we loose all our git-blame history.
2010-11-03 18:09:23 +00:00
Neil Roberts
b540dcb75a Support foreign textures in the texture-2d and rectangle backends
This adds two new internal functions to create a foreign texture for
the texture 2d and rectangle backends. cogl_texture_new_from_foreign
will now use one of these backends directly if there is no waste
instead of always using the sliced texture backend.
2010-10-22 12:19:02 +01:00
Neil Roberts
ccc3068ffd cogl-bitmap: Encapsulate the CoglBitmap even internally
The CoglBitmap struct is now only defined within cogl-bitmap.c so that
all of its members can now only be accessed with accessor
functions. To get to the data pointer for the bitmap image you must
first call _cogl_bitmap_map and later call _cogl_bitmap_unmap. The map
function takes the same arguments as cogl_pixel_array_map so that
eventually we can make a bitmap optionally internally divert to a
pixel array.

There is a _cogl_bitmap_new_from_data function which constructs a new
bitmap object and takes ownership of the data pointer. The function
gets passed a destroy callback which gets called when the bitmap is
freed. This is similar to how gdk_pixbuf_new_from_data
works. Alternatively NULL can be passed for the destroy function which
means that the caller will manage the life of the pointer (but must
guarantee that it stays alive at least until the bitmap is
freed). This mechanism is used instead of the old approach of creating
a CoglBitmap struct on the stack and manually filling in the
members. It could also later be used to create a CoglBitmap that owns
a GdkPixbuf ref so that we don't necessarily have to copy the
GdkPixbuf data when converting to a bitmap.

There is also _cogl_bitmap_new_shared. This creates a bitmap using a
reference to another CoglBitmap for the data. This is a bit of a hack
but it is needed by the atlas texture backend which wants to divert
the set_region virtual to another texture but it needs to override the
format of the bitmap to ignore the premult flag.
2010-07-15 17:24:01 +01:00
Neil Roberts
9a1aa08fda cogl: Add an internal CoglTextureRectangle backend
This adds an internal rectangle texture backend which is mostly based
on the CoglTexture2D backend. It will throw assert failures if any
operations are attempted that rectangle textures don't support, such
as mipmapping or hardware repeating.
2010-06-22 11:47:33 +01:00