1
0
Fork 0
Commit graph

5 commits

Author SHA1 Message Date
Jonas Ådahl
596376c408 crtc/kms: Outsource CRTC state fetching to MetaKmsCrtc
Move reading state into a struct for MetaCrtcKms to use instead of
querying KMS itself. The state is fetched in the impl context, but
consists of only simple data types, so is made accessible publicly. As
of this, MetaCrtcKms construction does not involve any manual KMS
interaction outside of the MetaKms abstraction.

https://gitlab.gnome.org/GNOME/mutter/issues/548
https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-06-20 13:31:55 +00:00
Jonas Ådahl
f59d62bc8f kms: Add connector representation
Represents drmModeConnector; both connected and disconnected. Currently
only provides non-changing meta data. MetaOutputKms is changed to use
MetaKmsConnector to get basic metadata, but variable metadata, those
changing depending on what is connected (e.g. physical dimension, EDID,
etc), are still manually retrieved by MetaOutputKms.

https://gitlab.gnome.org/GNOME/mutter/issues/548
https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-06-20 13:31:55 +00:00
Jonas Ådahl
4d3e804391 kms: Add plane representation
A plane is one of three possible: primary, overlay and cursor. Each
plane can have various properties, such as possible rotations, formats
etc. Each plane can also be used with a set of CRTCs.

A primary plane is the "backdrop" of a CRTC, i.e. the primary output for
the composited frame that covers the whole CRTC. In general, mutter
composites to a stage view frame onto a framebuffer that is then put on
the primary plane.

An overlay plane is a rectangular area that can be displayed on top of
the primary plane. Eventually it will be used to place non-fullscreen
surfaces, potentially avoiding stage redraws.

A cursor plane is a plane placed on top of all the other planes, usually
used to put the mouse cursor sprite.

Initially, we only fetch the rotation properties, and we so far
blacklist all rotations except ones that ends up with the same
dimensions as with no rotations. This is because non-180° rotations
doesn't work yet due to incorrect buffer modifiers. To make it possible
to use non-180° rotations, changes necessary include among other things
finding compatible modifiers using atomic modesetting. Until then,
simply blacklist the ones we know doesn't work.

https://gitlab.gnome.org/GNOME/mutter/issues/548
https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-06-20 13:31:55 +00:00
Jonas Ådahl
15a2ccd21b kms: Add CRTC representation
Add MetaKmsCrtc to represent a CRTC on the associated device. Change
MetaCrtcKms to use the ones discovered by the KMS abstraction. It still
reads the resources handed over by MetaGpuKms, but eventually it will
use only MetaKmsCrtc.

MetaKmsCrtc is a type of object that is usable both from an impl task
and from outside. All the API exposed via the non-private header is
expected to be accessible from outside of the meta-kms namespace.

https://gitlab.gnome.org/GNOME/mutter/issues/548
https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-06-20 13:31:55 +00:00
Jonas Ådahl
fef5753a19 backends/native: Add basic KMS abstraction building blocks
The intention with KMS abstraction is to hide away accessing the drm
functions behind an API that allows us to have different kind of KMS
implementations, including legacy non-atomic and atomic. The intention
is also that the code interacting with the drm device should be able to
be run in a different thread than the main thread. This means that we
need to make sure that all drm*() API usage must only occur from within
tasks that eventually can be run in the dedicated thread.

The idea here is that MetaKms provides a outward facing API other places
of mutter can use (e.g. MetaGpuKms and friends), while MetaKmsImpl is
an internal implementation that only gets interacted with via "tasks"
posted via the MetaKms object. These tasks will in the future
potentially be run on the dedicated KMS thread. Initially, we don't
create any new threads.

Likewise, MetaKmsDevice is a outward facing representation of a KMS
device, while MetaKmsImplDevice is the corresponding implementation,
which only runs from within the MetaKmsImpl tasks.

This commit only moves opening and closing the device to this new API,
while leaking the fd outside of the impl enclosure, effectively making
the isolation for drm*() calls pointless. This, however, is necessary to
allow gradual porting of drm interaction, and eventually the file
descriptor in MetaGpuKms will be removed. For now, it's harmless, since
everything still run in the main thread.

https://gitlab.gnome.org/GNOME/mutter/issues/548
https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-06-20 13:31:55 +00:00