This adds a new 'experimental-hdr' string property to the MonitorManager
which can be changed from looking glass.
Currently when the string equals 'on', HDR (PQ, Rec2020) will be enabled
on all monitors which support it. In the future support for more
transfer functions and color spaces as well as HDR metadata can be
added.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2879>
We want to avoid using too high scales too easily, which started to
happen 2f1dd049bf ("monitor-manager: Rework default scale factor
selection"). Instead of using the closest non-fractional scale, which
effectively is what we'd do, only round upwards if we're closer than
0.25 (25%).
Since there are some wiggle room for scales to make the logical
resolution on the integer pixel grid, make sure to compensate. This
compensation is done by adding an extra 0.2 to scale difference.
For example the following fractional scales will get these corresponding
integer scales:
* 1.25 -> 1.0
* 1.5 -> 1.0
* 1.75 -> 2.0
* 2.0 -> 2.0
* 2.50 -> 2.0
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2880>
From the scale factors available to it, Mutter will now try to select
the scale factor that makes the UI's size as close as possible to the
size it would be, w/o scaling, on a display at 135 PPI (for mobile
displays) or at 110 PPI (for stationary displays)
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2653>
This means objects have an owner, where the chain eventually always
leads to a MetaContext. This also means that all objects can find their
way to other object instances via the chain, instead of scattered global
singletons.
This is a squashed commit originally containing the following:
cursor-tracker: Don't get backend from singleton
idle-manager: Don't get backend from singleton
input-device: Pass pointer to backend during construction
The backend is needed during construction to get the wacom database.
input-mapper: Pass backend when constructing
monitor: Don't get backend from singleton
monitor-manager: Get backend directly from monitor manager
remote: Get backend from manager class
For the remote desktop and screen cast implementations, replace getting
the backend from singletons with getting it via the manager classes.
launcher: Pass backend during construction
device-pool: Pass backend during construction
Instead of passing the (maybe null) launcher, pass the backend, and get
the launcher from there. That way we always have a way to some known
context from the device pool.
drm-buffer/gbm: Get backend via device pool
cursor-renderer: Get backend directly from renderer
input-device: Get backend getter
input-settings: Add backend construct property and getter
input-settings/x11: Don't get backend from singleton
renderer: Get backend from renderer itself
seat-impl: Add backend getter
seat/native: Get backend from instance struct
stage-impl: Get backend from stage impl itself
x11/xkb-a11y: Don't get backend from singleton
backend/x11/nested: Don't get Wayland compositor from singleton
crtc: Add backend property
Adding a link to the GPU isn't enough; the virtual CRTCs of virtual
monitors doesn't have one.
cursor-tracker: Don't get display from singleton
remote: Don't get display from singleton
seat: Don't get display from singleton
backend/x11: Don't get display from singleton
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2718>
Instead of passing 4 arguments (red, green and blue arrays as well as a
size), always pass them together in a new struct MetaGammaLut. Makes
things slightly less tedious.
The KMS layer still has its own variant, but lets leave it as that for
now, to keep the KMS layer "below" the cross backend CRTC layer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
In practice, for KMS backend CRTC's, we cache the gamma in the monitor
manager instance, so that anyone asking gets the pending or up to date
value, instead of the potentially not up to date value if one queries
after gamma was scheduled to be updated, and before it was actually
updated.
While this is true, lets still move the API to the MetaCrtc type; the
backend specific implementation can still look up cached values from the
MetaMonitorManager, but for users, it becomes less cumbersome to not
have to go via the monitor manager.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2165>
It's not really about monitors, even though it is used for monitors.
Lets shrink MetaMonitorManager a bit moving it to the backend.
While at it, stop leaking it too.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
What determines whether one MetaMonitor is the same as the other should
be whether the actual monitor is the same. The way to check this is
comparing the EDID vendor/product/serial fields. Whene these are
incomplete, fall back on the 'winsys ID'.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
Same applies to MetaOutput. The reason for this is to make it possible
to more reliably know when there was EDID telling us about these
details. This will be used for colord integration.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
As for the types of monitor, X11 and KMS are currently assumed to always be
physical, while the virtual ones are assumed to be virtual. In theory
X11 ones could be virtual, but lets not bother. KMS ones can be virtual
in the case of virtual KMS, but we typically use that for testing as if
it was physical, so lets leave it as such.
Will later be used to feed correct information to colord.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2141>
If two modes are roughly the same, they should probably use the same UI
scaling factor. I.e. for the same monitor, if a 4K mode was configured to
have a certain scaling factor, and we generate a new configuration with
a similar sized 4K mode, we should re-use the scale previously
configured; however if we e.g. go from a 4K mode to a FHD mode, we
shouldn't.
This allows implementing better hueristics when using the switch-config
feature, where we'd be less likely to loose the for a certain monitor
mode combination previously configured scaling factor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2479>
Some monitors support hardware features to enable the privacy screen
mode that allows users to toggle (via software or hardware button) a
state in which the display may be harder to see to people not sitting
in front of it.
Expose then this capability to the monitor level so that we can get its
state and set it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1952>
With some resolutions (such as 4096x2160) we may compute duplicated
scale factors because we used a too wide threshold to check for an
applicable value.
In fact, while when we're at the first and last values it's fine to
search applicable values up to SCALE_FACTORS_STEP, on intermediate ones
we should stop in the middle of it, or we're end up overlapping the
previous scaling value domain.
In the said example in fact we were returning 2.666667 both when
looking to a scaling value close to 2.75 and 3.00 as the upper bound of
2.75 (3.0) was overlapping with the lower bound of 3.0 (2.75).
With the current code, the lower and upper bounds will be instead 2.875.
Adapt test to this, and this allows to also ensure that we're always
returning a sorted and unique list of scales (which is useful as also
g-c-c can ensure that this is true).
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
We introduced META_MONITOR_SCALES_CONSTRAINT_NO_FRAC to get global scale
values however, this didn't work properly for some resolutions.
In fact it may happen that for some resolutions (such as 3200x1800) that
we did not compute some odd scaling levels (such as 3.0) but instead
its closest fractional value that allowed to get an integer resolution
(2.98507452 in this case).
Now this is something relevant when using fractional scaling because we
want to ensure that the returned value, when multiplied to the scaled
sizes, will produce an integer resolution, but it's not in global scale
mode where we don't use a scaled framebuffer.
So, take a short path when using no fractional mode and just return all
the applicable values without waste iterations on fractional values.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1878>
In Xrandr we were caching the available scaling modes that were computed just
for the current mode, for each monitor, while we can actually reuse the
default implementation, by just passing the proper scaling constraint.
In monitor we need then to properly filter these values, by only accepting
integer scaling factors that would allow to have a minimal logical monitor
size.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/407
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/336>
When rebuilding the monitors (e.g. during hotplug), make sure to detach
the disposed monitors from any outputs before creating the new monitors.
While this isn't currently needed, as outputs are too being recreated,
with the to be introduced virtual outputs that are created for virtual
monitors, this is not always the case anymore, as these virtual outputs
are not regenerated each time anything changes.
Prepare for this by making sure that cleaning up disposed monitors
detach themself properly from the outputs, so new ones can attach
themself to outputs without running into conflicts.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Before each frame is maybe redrawn, push any new cursor KMS state to the
pending update. It'll then either be posted during the next page flip,
or when the same frame finishes, in case nothing was redrawn.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
The ID and name are just moved into the instance private, while the rest
is moved to a `MetaCrtcModeInfo` struct which is used during
construction and retrieved via a getter. Opens up the possibility to
add actual sub types.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
The output info is established during construction and will stay the
same for the lifetime of the MetaOutput object. Moving it out of the
main struct enables us to eventually clean up the MetaOutput type
inheritence to use proper GObject types.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
That is is_presentation, is_primary, is_underscanning and backlight.
The first three are set during CRTC assignment as they are only valid
when active. The other is set separately, as it is untied to
monitor configuration.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Previously the tile coordinate was used to offset a CRTC scanout
coordinate within a larger framebuffer. Since 3.36 we're always
scanning out from (0, 0) as we always have one framebuffer per CRTC; we
instead use the tile coordinate to calculate the coordinate the tile has
in the stage view. Adapt calculation to fulfil this promise instead of
the old one.
This also corrects the tiled custom monitor test case.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1199
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
Explicitly checking the dimensions of a mode to determine whether it
should be advertised or not fails for portrait style modes. Avoid this
by checking the area instead.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/722
The display name is being used by the monitor manager to expose to name
to the DBUS API.
It is being rebuilt each time, so instead build the displa yname once
for the monitor and keep it around, with an API to retrieve it, so that
we can reuse it in preparation of xdg-output v2 support.
https://gitlab.gnome.org/GNOME/mutter/issues/645