Someone not sure which cogl_color_set_from_* version is "best" may use
set_from_4d because taking doubles implies higher precision. Currently
it doesn't have any advantage.
This makes it consistent with cogl_rectangle_with_{multi,}texture_coords.
Notably the reason cogl_rectangle_with_{multi,}texture_coords wasn't changed
instead is that the former approach lets you describe back facing rectangles.
(though technically you could pass negative width/height values to achieve
this; it doesn't seem as neat.)
The code is #if 0 guarded, but when uncommented it outlines all drawn
rectangles with an un-blended red, green or blue border. This may e.g. help
with debugging texture slicing issues or blending issues, plus it looks quite
cool.
Bug 1349 - Using the anchor point to set the scale center is messy
The branch adds an extra center point for scaling which can be used
for example to set a scale about the center without affecting the
position of the actor.
The scale center can be specified as a unit offset from the origin or
as a gravity. If specified as a gravity it will be stored as a
fraction of the actor's size so that the position will track when the
actor changes size.
The anchor point and rotation centers have been modified so they can
be set with a gravity in the same way. However, only the Z rotation
exposes a property to set using a gravity because the other two
require a Z coordinate which doesn't make sense to interpret as a
fraction of the actor's width or height.
Conflicts:
clutter/clutter-actor.c
When drawing a texture with waste in _cogl_multitexture_unsliced_quad
it scales the texture coordinates so that the waste is not
included. However the formula was the wrong way around so it was
calculating as if the texture coordinates are ordered x1,x2,y1,y2 but
it is actually x1,y1,x2,y2.
When the texture is sliced it drops back to a fallback function and
passes it the texture coordinates from the rectangle. However if no
tex coords are given it would crash. Now it passes the default
0.0->1.0 tex coords instead.
If no texture coordinates are given then texture_unsliced_quad tries
to generate its own coordinates. However it also tries to read the
texture coordinates to check if they are in [0.0,1.0] range so it will
crash before it reaches that.
* generic-actor-clone:
Remove CloneTexture from the API
[tests] Clean up the Clone interactive test
Rename ActorClone to Clone/2
Rename ActorClone to Clone/1
Improves the unit test to verify more awkward scaling and some corresponding fixes
Implements a generic ClutterActorClone that doesn't need fbos.
Conflicts:
clutter/cogl/gl/cogl-texture.c
clutter/cogl/gles/cogl-primitives.c
* cogl-material:
clutter-{clone-,}texture weren't updating their material opacity.
Updates GLES1 support for CoglMaterial
Normalizes gl vs gles code in preperation for synching material changes
Removes cogl_blend_func and cogl_alpha_func
Fully integrates CoglMaterial throughout the rest of Cogl
[cogl-material] Restore the GL_TEXTURE_ENV_MODE after material_rectangle
[cogl-material] Make the user_tex_coords parameter of _rectangle const
[test-cogl-material] Remove return value from material_rectangle_paint
Add cogl-material.h and cogl-matrix.h to libclutterinclude_HEADERS
[cogl-material] improvements for cogl_material_rectangle
[cogl-material] Adds a cogl_material_set_color function
[cogl-material] Some improvements for how we sync CoglMaterial state with OpenGL
[cogl-material] Converts clutter-texture/clutter-clone-texture to the material API
[doc] Hooks up cogl-material reference documentation
Updates previous GLES multi-texturing code to use CoglMaterial
Adds a CoglMaterial abstraction, which includes support for multi-texturing
[doc] Hooks up cogl-matrix reference documentation
Adds CoglMatrix utility code
[tests] Adds an interactive unit test for multi-texturing
[multi-texturing] This adds a new cogl_multi_texture API for GL,GLES1 + GLES2
This updates cogl/gles in line with the integration of CoglMaterial throughout
Cogl that has been done for cogl/gl.
Note: This is still buggy, but at least it builds again and test-actors works.
Some GLES2 specific changes were made, but these haven't been tested yet.
This changes all GLES code to use the OpenGL function names instead of
the cogl_wrap_* names. For GLES2 we now define the OpenGL name to point
to the wrapper, as opposed to defining the wrapper to point to the
OpenGL name for GLES1.
I've also done a quick pass through gl/cogl.c and gles/cogl.c to make
them more easily comparable. (most of the code is now identical)
The GL blend function and alpha function are now controlled by the material
code, and even internally Cogl should now be using the material API when
it needs control of these.
This glues CoglMaterial in as the fundamental way that Cogl describes how to
fill in geometry.
It adds cogl_set_source (), which is used to set the material which will be
used by all subsequent drawing functions
It adds cogl_set_source_texture as a convenience for setting up a default
material with a single texture layer, and cogl_set_source_color is now also
a convenience for setting up a material with a solid fill.
"drawing functions" include, cogl_rectangle, cogl_texture_rectangle,
cogl_texture_multiple_rectangles, cogl_texture_polygon (though the
cogl_texture_* funcs have been renamed; see below for details),
cogl_path_fill/stroke and cogl_vertex_buffer_draw*.
cogl_texture_rectangle, cogl_texture_multiple_rectangles and
cogl_texture_polygon no longer take a texture handle; instead the current
source material is referenced. The functions have also been renamed to:
cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords
and cogl_polygon respectivly.
Most code that previously did:
cogl_texture_rectangle (tex_handle, x, y,...);
needs to be changed to now do:
cogl_set_source_texture (tex_handle);
cogl_rectangle_with_texture_coords (x, y,....);
In the less likely case where you were blending your source texture with a color
like:
cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */
cogl_texture_rectangle (tex_handle, x, y,...);
you will need your own material to do that:
mat = cogl_material_new ();
cogl_material_set_color4ub (r,g,b,a);
cogl_material_set_layer (mat, 0, tex_handle));
cogl_set_source_material (mat);
Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use
cog_rectangle_with_texure_coords since these are the coordinates that
cogl_rectangle will use.
For cogl_texture_polygon; as well as dropping the texture handle, the
n_vertices and vertices arguments were transposed for consistency. So
code previously written as:
cogl_texture_polygon (tex_handle, 3, verts, TRUE);
need to be written as:
cogl_set_source_texture (tex_handle);
cogl_polygon (verts, 3, TRUE);
All of the unit tests have been updated to now use the material API and
test-cogl-material has been renamed to test-cogl-multitexture since any
textured quad is now technically a test of CoglMaterial but this test
specifically creates a material with multiple texture layers.
Note: The GLES backend has not been updated yet; that will be done in a
following commit.
The Cogl primitives broke for GLES 1.1 and 2 after the cogl-float
branch merge.
CoglPathNode was still being declared as GLfixed for the GLES backend
but it was being filled with float values so they were all ending up
as numbers < 1.
glDrawArrays was being called with GL_FIXED so this has been changed
to GL_FLOAT.
The scanline rasterizer had a leftover hardcoded ClutterFixed constant
to add a small amount to the height of each line.
struct _CoglFloatVec2 has been removed because it is no longer used
anywhere.
The maintainer compiler flags we use trigger warnings and errors
in the autogenerated code that gtk-doc creates to scan the header
and source files. Since we cannot control that, and we must run
a distcheck with both --enable-gtk-doc and --enable-maintainer-flags
turned on, we need to use less-strict compiler flags when inside
the doc/reference subdirectories.
The way to do this is to split the maintainer compiler flags into
their own Makefile variable, called MAINTAINER_CFLAGS. The we
can use $(MAINTAINER_CFLAGS) in the INCLUDES or _CFLAGS sections
of each part of the source directories we wish to check with the
anal retentiveness suited for maintainers.
* float-alpha-value:
[script] Parse easing modes by name
[docs] Update the easing modes documentation
[animation] Implement new easing functions
[animation] Move the alpha value to floating point
The script converted calls to COGL_FIXED_MUL(x,y) to (x*y). However
this fails for cases like this:
COGL_FIXED_MUL(a + b, c)
which become
(a + b * c)
The meaning of this is of course different because multiplication has
a higher precedence than addition.
This was causing breakages in cogl_texture_quad_sw when the vertex
coordinates are not in increasing order. This was the case in
test-backface-culling when NPOTs are not available.
Improve clutter_sinx() by replacing the low precision CFX_SIN_STEP
with a multiply/divide pair. This reduces the maximum error from
1.8e-04 to 2.4e-05.
http://bugzilla.openedhand.com/show_bug.cgi?id=1314
Based on a patch by Owen W. Taylor <otaylor@fishsoup.net>
Compute the value of the camera distance as exactly half the xx
component of the projection matrix. The heuristically derived
value for 60 degrees was off by about 0.016%, causing noticeable
blurring, and other field of view angles which didn't have the
heuristic adjustment off by much more.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Boolean arguments for functions are pretty evil and usually
lead to combinatorial explosion of parameters in case multiple
settings are added.
In the case of the COGL texture constructors we have a boolean
argument for enabling the auto-mipmapping; it is conceivable that
we might want to add more settings for a COGL texture without
breaking API or ABI compatibility, so the boolean argument should
become a bitmask.
The internals have not been changed: instead of checking for
a non-zero value, we check for a bitmask being set.
This better reflects the fact that the api manages sets of vertex attributes,
and the attributes really have no implied form. It is only when you use the
attributes to draw that they become mesh like; when you specify how they should
be interpreted, e.g. as triangle lists or fans etc. This rename frees up the
term "mesh", which can later be applied to a concept slightly more fitting.
E.g. at some point it would be nice to have a higher level abstraction that
sits on top of cogl vertex buffers that adds the concept of faces. (Somthing
like Blender's mesh objects.) There have also been some discussions over
particle engines, and these can be defined in terms of emitter faces; so some
other kind of mesh abstraction might be usefull here.
Okey; to summarise the changes...
We have converted Clutter and Cogl over to using floating point internally
instead of 16.16 fixed, but we have maintained the cogl-fixed API as a
utility to applications in case they want to implement their own optimizations.
The Clutter API has not changed (though ClutterFixed and ClutterUnit are now
internally floats) but all Cogl entry points have been changed to accept floats
now instead of CoglFixed.
To summarise the rationale...
There have been a number of issues with using fixed point though out Clutter
and Cogl including: lack of precision, lack of range, excessive format
conversion (GPUs tend to work nativly with IEEE floats) and maintainability.
One of the main arguments for fixed point - performance - hasn't shown
itself to be serious in practice so far since we seem to be more limited
by GPU performance and making improvements regarding how we submit data to
OpenGL[ES]/the GPU has had a more significant impact.
Ref: The recent multiple rectangle queuing changes + the
cogl-texture-agressive-batching branch which show significant performance
gains, and that recent tests on the ipodtouch (ARM + MBX) also showed no
loss of performance running with floats.
So finally; please forgive the inevitable fallout, this is a far reaching
change. There are still a few known issues with the fixed to float
conversion but enough works for all our conformance tests to pass, and the
remaining issues hopefully wont be too tricky to solve. For reference two
tags will be available either side of this change: "cogl-fixed-end" and
"cogl-float-start"
To deal with all the corner cases that couldn't be scripted a number of patches
were written for the remaining 10% of the effort.
Note: again no API changes were made in Clutter, only in Cogl.
This is the result of running a number of sed and perl scripts over the code to
do 90% of the work in converting from 16.16 fixed to single precision floating
point.
Note: A pristine cogl-fixed.c has been maintained as a standalone utility API
so that applications may still take advantage of fixed point if they
desire for certain optimisations where lower precision may be acceptable.
Note: no API changes were made in Clutter, only in Cogl.
Overview of changes:
- Within clutter/* all usage of the COGL_FIXED_ macros have been changed to use
the CLUTTER_FIXED_ macros.
- Within cogl/* all usage of the COGL_FIXED_ macros have been completly stripped
and expanded into code that works with single precision floats instead.
- Uses of cogl_fixed_* have been replaced with single precision math.h
alternatives.
- Uses of COGL_ANGLE_* and cogl_angle_* have been replaced so we use a float for
angles and math.h replacements.
It looks like the changes to cogl-gles2-wrapper.h were accidentally
committed to the actual file instead of the patch in commit
de27da0e. This commit moves the changes back into the patch so
cogl-gles2-wrapper.h is reverted back to master.
The patches have been updated to apply cleanly.
The patches for the g_warnings in clutter-actor.c have been removed
because master now uses CLUTTER_UNITS_FORMAT so they aren't
necessary. The clutter-units.h patch now sets CLUTTER_UNITS_FORMAT to
'f'.
The changes from the GL version of cogl-texture.c have been mirrored
in the GLES version. This adds the cogl_texture_new_from_bitmap
function and fixes the build errors.
* async-textures:
Whitespace fixes in ClutterTexture
[async-loading] Do not force the texture size on async load
[async-loading] Update asynchronous image loading
Add API for extracting image size from a file
Update/clean and apply the async-texture patch from bug #1144
* animation-improvements:
[docs] Add ClutterAnimatable to the API reference
Add license notice to ClutterAnimation files
[docs] Update the ClutterAnimation section
[animation] Extend ClutterAnimation support to all objects
[animation] Use ClutterAnimatable inside Animation
[animation] Add ClutterAnimatable
[animation] Allow registering custom progress function
[animation] Interval::compute_value should return a boolean
Animate ClutterColor properties
The GLES 2 wrapper needs to set up some state before each
draw. Previously this was acheived by wrapping glDrawArrays. Since the
multiple-texture-rectangle branch merge, glDrawElements is used
instead so we also need a wrapper for that.
It was also directly calling glBindTexture. GLES 2 uses a wrapper for
this function so that it can cope with GL_ALPHA format textures. The
format of the current texture needs to be stored as well as the target
and object number for this to work.
For the asynchronous loading we need a function call that parses
a file, given its path, and retrieves the image width and height.
This commit adds cogl_bitmap_get_size_from_file() to the CoglBitmap
API.