When workspaces-only-on-primary is set and a window is moved back to the
primary, we also move it to the active workspace to avoid the confusion
of a visible window suddenly disappearing when crossing the monitor border.
However when the window is not actually moved by the user, preserving the
workspace makes more sense - we already do this in some cases (e.g. when
moving between primary monitors), but miss others (unplugging the previous
monitor); just add an explicit user_op parameter as used elsewhere to cover
all exceptions.
https://bugzilla.gnome.org/show_bug.cgi?id=731760
Remember the last monitor a window was moved to by user action and
try to move it back on monitor changes; this should match user
expectations much better when a monitor is unplugged temporarily.
https://bugzilla.gnome.org/show_bug.cgi?id=731760
When workspaces-only-on-primary is set, a window can be on all
workspaces either because it is on a non-primary workspace, or
because it was explicitly made sticky. Only the latter is reflected
in _NET_WM_STATE, but both will result in a "magic" _NET_WM_DESKTOP,
which we (and probably other WMs) use to set the initial sticky state.
So to avoid confusing other WMs (or ourselves), make sure to only
have _NET_WM_STATE_STICKY reflected in _NET_WM_DESKTOP when unmanaging.
Window state like maximization and minimization should be preserved
over restarts - in a patch review, this would qualify as "needs-work",
so revert the cleanup until the issues are fixed.
This reverts commit dc6decefb5.
Rather than calculate it speculatively with the current properties
which may be too new or too out of date, make sure it always fits
with the proper definition. We update it when we update the toplevel
window for X11, and when a Wayland surface is committed with a newly
attached buffer.
With get_input_region existing, get_input_rect is a misnomer. Really,
it's about the geometry of the output surface, and it's only used that
way in the compositor code.
Way back when in GNOME 3.2, get_input_rect was added when we added
invisible borders. get_outer_rect was always synonymous with server-side
geometry of the toplevel. get_outer_rect was used for both user-side
policy (the "frame rect") and to get the geometry of the window.
Invisible borders were meant to extend the input region of the frame
window silently. Since most users of get_outer_rect cared about the
frame rect, we kept that the same and added a new method, get_input_rect
to get the full rect of the framed window with all invisible borders for
input kept on.
As time went on and CSD and Wayland became a reality, the relationship
between the server-side geometry and the "frame rect" became more
complicated, as can be evidenced by the recent commits. Since clients
don't tend to be framed anymore, they set their own input region.
get_buffer_rect is also sort of a poor name, since X11 doesn't really
have buffers, but we don't really have many other alternatives.
This doesn't change any of the code, nor the meaning. It will always
refer to the rectangle where the toplevel should be placed.
All of the users of get_input_rect don't actually want a synthesized
input rect based off of the current margins. What they really want is
the last-configured size of the toplevel window.
Since we don't properly track this anymore in the generic MetaWindow,
use XGetWindowAttributes to fetch a server-side rectangle. This is a
bad layer violation, but since the window geometry code will have to
be rewritten anyway for the Wayland set_window_geometry, let's just
push a hacky fix for now.
Struts are defined in terms of screen edges, so expand the rectangles
we get via set_builtin_struts() accordingly. However we do want to
allow chrome on edges between monitors, in which case the expansion
would render an entire monitor unusable - don't expand the rectangles
in that case, which means we will only use them for constraining
windows but ignore them for the client-visible _NET_WORKAREA property.
https://bugzilla.gnome.org/show_bug.cgi?id=730527
Like the _NET_WM_STRUT/_NET_WM_STRUT_PARTIAL client properties,
_NET_WORKAREA is defined in terms of screen geometry rather than
taking individual monitors into account. However we do want to
allow system chrome to be attached to a monitor edge rather than
a screen edges under some circumstances. As not all clients can
be assumed to deal gracefully with the resulting workarea, use
those "struts" only internally for constraining windows, but
ignore them when exporting _NET_WORKAREA.
https://bugzilla.gnome.org/show_bug.cgi?id=730527
Since commit 8b2b65246a, we assume that the compositor always
exists. Alas, the assumption is wrong - the compositor is currently
initialized after the screen, but meta_screen_new() itself may
call a compositor function if initialization involves a workspace
switch (which will happen when meta_workspace_activate() is called
more than once and for different workspaces - or in other words,
when _NET_CURRENT_DESKTOP is set and not 0).
So carefully split out the offending bits and only call them after
the compositor has been initialized.
https://bugzilla.gnome.org/show_bug.cgi?id=731332
If we have a tree of a window, a non-attached dialog, and then an
attached dialog, we want to move the second window, not the attached
dialog or the topmost. In other words, we want to move the first
non-attached window, or the first "freefloating window".
This happens in Firefox, whose Preferences dialog is freefloating,
but suboptions of those are modal dialogs.
Stupid apps fullscreen themselves by resizing the client window to
monitor size. A monitor-sized frame rect on the other hand is perfectly
normal on monitors without struts - stop force-fullscreening those
and catch the real baddies instead.
https://bugzilla.gnome.org/show_bug.cgi?id=730681
When opening the window menu without an associated control - e.g.
by right-clicking the titlebar or by keyboard - using coordinates
for the menu position is appropriate. However when the menu is
associated with a window button, the expected behavior in the
shell can be implemented much easier with the full button geometry:
the menu will point to the center of the button's bottom edge
rather than align to the left/right side of the titlebar as it
does now, and the clickable area where a release event does not
dismiss the menu will match the actual clickable area in mutter.
So add an additional show_window_menu_for_rect() function and
use it when opening the menu from a button.
https://bugzilla.gnome.org/show_bug.cgi?id=731058
This can happen since we select for events on the root window, and
clients themselves might not select for input, meaning the X server
will bubble up. Just do nothing and ignore the event in this case.
This should hopefully fix some of the
Window manager warning: Log level 8: meta_window_raise: assertion '!window->override_redirect' failed
Window manager warning: Log level 8: meta_window_focus: assertion '!window->override_redirect' failed
spam that people have been seeing.
Since we often call meta_window_move_resize_now immediately after
mapping a window, we need to make sure that the placed coordinates
are saved in the unconstrained_rect. Ideally, placement positions
wouldn't be part of the constraints system, but instead are just
done inside meta_window_move_resize_internal as part of a special
path.
We're still working out the kinks of one large-scale refactor, so
it's best not to do another one while the first is going on. This
would be a great future cleanup, though: untangling constraints
and placement, alongside the force_placement state machine and
friends.
For Wayland, we want to have everything possible in terms of the frame
rect, or "window geometry" as the Wayland protocol calls it, in order
to properly eliminate some flashing when changing states to fullscreen
or similar.
For this, we need to heavily refactor how the code is structured, and
make it so that meta_window_move_resize_internal is specified in terms
of the frame rect coordinate space, and transforming all entry points
to meta_window_move_resize_internal.
This is a big commit that's hard to tear apart. I tried to split it
as best I can, but there's still just a large amount of changes that
need to happen at once.
Expect some regressions from this. Sorry for any temporary regression
that this might cause.
We have two different coordinate spaces here. One is the rectangle
returned by meta_window_get_frame_rect, which is called the "frame
rect" or "the window geometry", which includes visible frame borders
but not invisible frame borders. The other is "frame->rect" which
corresponds to the frame's server geometry. That is, it includes
both visible and invisible frame borders.
These two were of course the same until we introduced invisible
frame borders, and an executive decision was made to make
meta_window_get_frame_rect return the rectangle bounding the
visible portions of the frame.
As time went on, the "frame rect" turned out to be more useful when
making decisions upon, since the user often doesn't think about the
invisible window geometry as part of the window.
We already calculate what amounts to the "frame rect" in the theme
code, so just change META_CORE_GET_FRAME_RECT to consume that
directly.
Since we're going to be calling meta_window_get_frame_rect in here
soon, I'd rather it be one method call, rather than two. We can't
put it at the toplevel, since that might cause infinite recursion
(e.g. meta_core_get calls meta_window_get_frame_rect calls
meta_ui_get_frame_borders calls meta_core_get, ...)
Now that meta_window_move_resize and friends act in frame rect
coordinates, we need to convert the initial grab_anchor_window_pos
storage to be in frame rect coordinates as well.
This makes Alt+F7 / Alt+F8 work respectively under X11 nested mode.
For the native backend implementation, we'll need a special Clutter
function, so don't implement that for now.
The last commit added support for the "appmenu" button in decorations,
but didn't actually implement it. Add a new MetaWindowMenuType parameter
to the show_window_menu () functions and use it to ask the compositor
to display the app menu when the new button is activated.
https://bugzilla.gnome.org/show_bug.cgi?id=730752
We want to synchronize the button layouts of our server side
decorations and GTK+'s client side ones. However each currently
may contain buttons not supported by the other, which makes this
unnecessarily tricky.
So add support for a new "appmenu" button in the layout, to display
the fallback app menu in the decorations.
https://bugzilla.gnome.org/show_bug.cgi?id=730752