Bug 448183 fixed an issue with _NET_WM_MOVERESIZE_WINDOW not moving a
window by basing the resize on the current (new) rectangle instead of
the original rectangle.
While this fixes the issue with _NET_WM_MOVERESIZE_WINDOW, this also
causes windows with a size increment to move when the resize also
implies a move, such windows might drift while resizing.
Make sure to use the current rectangle for non-interactive resizes only.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/543
On interactive resize, mutter calculates the difference in size based on
the pointer location and relies on window constraints to ensure the
minimum size is honored.
Wayland however does asynchronous window configuration, meaning that not
checking for size hints early enough may lead to the window moving as
the locations was initially computed on a size which will be invalidate
by the client eventually.
Make sure to respect the client size hint on update_resize() so that we
don't end up with a window moving unexpectedly when the client
eventually acked the configuration.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1495
Aligning windows manually with other windows has become less important
since the advent of tiling. This decreases the usefulness of edge
resistance, which in fact many users perceive as lag nowadays.
Account for that by limiting resistance to screen and monitor edges by
default, and only include windows when the control key is pressed.
https://bugzilla.gnome.org/show_bug.cgi?id=679609
Commit 033f0d11bf added a fallback in case the tile monitor wasn't
set before, but didn't actually check for a previously set value.
As a result, the "fallback" is not set unconditionally, which may
differ from the expected monitor: The tile monitor is determined
by the pointer position, while the window's monitor is the one
where the biggest part of the window resides on.
https://gitlab.gnome.org/GNOME/mutter/-/issues/1389
It's pointless to call into functions that produce information that will
end up nowhere, so lets not. This will generate less angst when doing
more intense data gathering and string generation in debug log calls.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1467
We only update the last device from actual input interaction here,
avoid this pair of events. This is specially nasty with
CLUTTER_DEVICE_REMOVED, since the device we're notifying upon will be
disposed soon after emission.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1460
This is already taken care of in meta_backend_monitors_changed(), called
from the same code paths that emit ::monitors-changed-internal. It is
better to leave this up to backend internals.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1448
Analogous to `ClutterDrawDebugFlag` but intended for concepts that
are not present in Clutter, such as Wayland/X11 opaque regions.
Also add the first flag for the later.
To set the flag, run:
`Meta.add_debug_paint_flag(Meta.DebugPaintFlag.OPAQUE_REGION)`
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1372
meta_run() is still left intact and does the same as before; the new
functions are only intended to be used by tests, as they may need to set
things up after starting up. Doing so linearly in the test case is much
easier than adding callbacks, so meta_run() is split up to make this
possible.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
The delete event was used for signalling the close button was clicked on
clutter windows. Being a compositor we should never see these, unless
we're running nested. Remove the plumbing of the DELETE event and just
directly call meta_quit() when we see it, if we're running nested.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1364
Allowing code from inside mutter to create a child process and
delegate on it some of its tasks is something very useful. This can
be done easily with the g_subprocess and g_subprocess_launcher classes
already available in GLib and GObject.
Unfortunately, although the child process can be a graphical program,
currently it is not possible for the inner code to identify the
windows created by the child in a secure manner (this is: being able
to ensure that a malicious program won't be able to trick the inner
code into thinking it is a child process launched by it).
Under X11 this is not a problem because any program has full control
over their windows, but under Wayland it is a different story: a
program can't neither force their window to be kept at the top (like a
docker program does) or at the bottom (like a program for desktop icons
does), nor hide it from the list of windows. This means that it is not
possible for a "classic", non-priviledged program, to fulfill these
tasks, and it can be done only from code inside mutter (like a
gnome-shell extension).
This is a non desirable situation, because an extension runs in the
same main loop than the whole desktop itself, which means that a
complex extension can need to do too much work inside the main loop,
and freeze the whole desktop for too much time. Also, it is important
to note that javascript doesn't have access to fork(), or threads,
which means that, at most, all the parallel computing that can do is
those available in the _async calls in GLib/GObject.
Also, having to create an extension for any priviledged graphical
element is an stopper for a lot of programmers who already know
GTK+ but doesn't know Clutter.
This patch wants to offer a solution to this problem, by offering a
new class that allows to launch a trusted child process from inside
mutter, and make it to use an specific UNIX socket to communicate
with the compositor. It also allows to check whether an specific
MetaWindow was created by one of this trusted child processes or not.
This allows to create extensions that launch a child process, and
when that process creates a window, the extension can confirm in a
secure way that the window really belongs to that process
launched by it, so it can give to that window "superpowers" like
being kept at the bottom of the desktop, not being listed in the
list of windows or shown in the Activities panel... Also, in future
versions, it could easily implement protocol extensions that only
could be used by these trusted child processes.
Several examples of the usefulness of this are that, with it, it
is possible to write programs that implements:
- desktop icons
- a dock
- a top or bottom bar
...
all in a secure manner, avoiding insecure programs to do the same.
In fact, even if the same code is launched manually, it won't have
those privileges, only the specific process launched from inside
mutter.
Since this is only needed under Wayland, it won't work under X11.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/741
There are a couple of places in gnome-shell where we aren't interested
in which workspace is active, but whether a given workspace is active.
Of course it's easy to use the former to determine the latter, but we
can offer a convenience property on the workspace itself almost for
free, so let's do that.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1336
Make the clutter_input_device_get_actor() API public and remove
clutter_input_device_get_pointer_actor() in favour of the new function.
This allows also getting the "pointer" actor for a given touch sequence,
not only for real pointer input devices like mice.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1275
X11 window stacking operations are by nature prone to race conditions.
For example, we might queue a "raise above" operation, but before it
actually takes place, the sibling the window was to be rased above, is
withdrawn.
In these cases we'd log warnings even though they are expected to
happen. Downgrade these warnings to debug messages, only printed when
MUTTER_VERBOSE is set.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1300
When an app disappears after some data from it has been copied to the
clipboard, the owner of the clipboard selection becomes a new memory
selection source. The initial reference this new selection source is
never unref'ed, which leads to this being leaked on the next clipboard
selection owner change.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1293
Using XDG_CONFIG_HOME allows users to place their keyboard configuration into
their home directory and have them loaded automatically.
libxkbcommon now defaults to XDG_CONFIG_HOME/xkb/ first, see
https://github.com/xkbcommon/libxkbcommon/pull/117
However - libxkbcommon uses secure_getenv() to obtain XDG_CONFIG_HOME and thus
fails to load this for the mutter context which has cap_sys_nice.
We need to manually add that search path as lookup path.
As we can only append paths to libxkbcommon's context, we need to start with
an empty search path set, add our custom path, then append the default search
paths.
The net effect is nil where a user doesn't have XDG_CONFIG_HOME/xkb/.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/936
We would get the MetaDisplay from the backend singleton before creating
the MetaCompositor, then in MetaCompositor, get the backend singleton
again to get the stage. To get rid of the extra singleton fetching, just
pass the backend the MetaCompositor constructors, and fetch the stage
directly from the backend everytime it's needed.
This also makes it available earlier than before, as we didn't set our
instance private stage pointer until the manage() call.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1289
Move Wayland support (i.e. the MetaWaylandCompositor object) made to be
part of the backend. This is due to the fact that it is needed by the
backend initialization, e.g. the Wayland EGLDisplay server support.
The backend is changed to be more involved in Wayland and clutter
initialization, so that the parts needed for clutter initialization
happens before clutter itself initialization happens, and the rest
happens after. This simplifies the setup a bit, as clutter and Wayland
init now happens as part of the backend initialization.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1218
Since PIDs are inherently insecure because they are reused after a
certain amount of processes was started, it's possible the client PID
was spoofed by the client.
So make sure users of the meta_window_get_pid() API are aware of those
issues and add a note to the documentation that the PID can not be
totally trusted.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
Since the PID of a window can't change as long as the window exists, we
can safely cache it after we got a valid PID once, so do that by adding
a new `window->client_pid` private property.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
The shell uses the PID of windows to map them to apps or to find out
which window/app triggered a dialog. It currently fails to do that in
some situations on Wayland, because meta_window_get_pid() only returns a
valid PID for x11 clients.
So use the client PID instead of the X11-exclusive _NET_WM_PID property
to find out the PID of the process that started the window. We can do
that by simply renaming the already existing
meta_window_get_client_pid() API to meta_window_get_pid() and moving
the old API providing the _NET_WM_PID to meta_window_get_netwm_pid().
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1180
When tiling, we want to set the tile monitor. To not have to do this
from the call site, make meta_window_tile() fall back to the current
monitor if nothing set it prior to the call.
This will make it more convenient for test cases to test tiling
behavior.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
The 'assert_size' command checks that the size of the window, both
client side and compositor side, corresponds to an expected size set by
the test case.
The size comparison can only be done when the window is using 'csd', in
order for both the client and server to have the same amount of
understanding of the title bar. For ssd, the client cannot know how
large the title bar, thus cannot verify the full window size.
Sizes can be specified to mean the size of the monitor divided by a
number. This is that one can make sure a window is maximized or
fullscreened correctly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1171
Move to center uses all monitors for calculating work area.
This can lead to an unexpected behaviour on some monitor
configurations resulting in current window being split between
monitors. We should move window to the center of the active display.
Closes https://gitlab.gnome.org/GNOME/mutter/-/issues/1073
Add MetaAnonymousFile, an abstraction around anonymous read-only files.
Files can be created by calling meta_anonymous_file_new(), passing the
data of the file. Subsequent calls to meta_anonymous_file_open_fd()
return a fd that's ready to be sent over the socket.
When mapmode is META_ANONYMOUS_FILE_MAPMODE_PRIVATE the fd is only
guaranteed to be mmap-able readonly with MAP_PRIVATE but does not
require duplicating the file for each resource when memfd_create is
available. META_ANONYMOUS_FILE_MAPMODE_SHARED may be used when the
client must be able to map the file with MAP_SHARED but it also means
that the file has to be duplicated even when memfd_create is available.
Pretty much all of this code was written for weston by Sebastian Wick,
see https://gitlab.freedesktop.org/wayland/weston/merge_requests/240.
Co-authored-by: Sebastian Wick <sebastian@sebastianwick.net>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1012
For the cases where we read a fixed size from the selection (eg. imposing
limits for the clipboard manager), g_input_stream_read_bytes_async() might
not read up to this given size if the other side is spoonfeeding it content.
Cater for multiple read/write cycles here, until (maximum) transfer size is
reached.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1198
Try to bypass compositing if there is a fullscreen toplevel window with
a buffer compatible with the primary plane of the monitor it is
fullscreen on. Only non-mirrored is currently supported; as well as
fullscreened on a single monitor. It should be possible to extend with
more cases, but this starts small.
It does this by introducing a new MetaCompositor sub type
MetaCompositorNative specific to the native backend, which derives from
MetaCompositorServer, containing functionality only relevant for when
running on top of the native backend.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
MetaCompositor is the place in mutter that manages the higher level
state of compositing, such as handling what happens before and after
paint. In order for other units that depend on having a compositor
instance active, but should be initialized before the X11 implementation
of MetaCompositor registers as a X11 compositing manager, split the
initialization of compositing into two steps:
1) Instantiate the object - only construct the instance, making it
possible for users to start listening to signals etc
2) Manage - this e.g. establishes the compositor as the X11 compositing
manager and similar things.
This will enable us to put compositing dependent scattered global
variables into a MetaCompositor owned object.
For now, compositor management is internally done by calling a new
`meta_compositor_do_manage()`, as right now we can't change the API of
`meta_compositor_manage()` as it is public. For the next version, manual
management of compositing will removed from the public API, and only
managed internally.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
While at it, fix some style inconsistencies, for now use a single
singleton struct instead of multiple static variables, and
other non-functional cleanups. Semantically, there is no changes
introduced.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Better to have the relevant object figure out whether it is a good
position to be unredirectable other than the actor, which should be
responsible for being composited.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
Currently we check whether a window is alive everytime it's focused.
This means that an application that doesn't respond to the check-alive
event during startup always showing the "application froze" dialog,
without the user ever trying to interact with it.
An example where this tends to to happen is with games, and for this
particular scenario, it's purely an annoyance, as I never tried to
interact with the game window in the first place, so I don't care that
it's not responding - it's loading.
To avoid these unnecessary particular "app-is-frozen" popups, remove the
alive check from the focus function, and instead move it back to the
"meta_window_activate_full()" call. To also trigger it slightly more
often, also add it to the path that triggers the window focus when a
user actively clicks on the window.
This means that we currently check whether a window is alive on:
* Any time the window is activated. This means e.g. alt-tab or
selecting the window in the overview.
* The user clicks on the window.
Note that the second only works for an already focused window on
Wayland, as on X11, we don't refocus it. This particular case isn't
changed with this commit, as we didn't call meta_window_focus() to begin
with here.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1182
Support for them appears to be way less common than e.g. png, which is
currently the preferred format from Firefox, Chromium, Libreoffice and others.
Adopt to that fact.
As a side effect, this works around a bug observed when copying images in
Firefox on Wayland.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1141
This is so that cogl-trace.h can start using things from cogl-macros.h,
and so that it doesn't leak cogl-config.h into the world, while exposing
it to e.g. gnome-shell so that it can make use of it as well. There is
no practical reason why we shouldn't just include cogl-trace.h via
cogl.h as we do with everything else.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1059
We used to inhibit all pad actions while the OSD is shown, but one we
would actually want to handle are mode switches while the OSD is open.
So it has an opportunity to catch up to the mode switch.
This lets MetaInputSettings reflect the mode switch (eg. when querying
action labels), so the OSD has an opportunity to update the current
actions.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/975
Commit cda9579034 fixed a corner case when setting the initial workspace
state of transient windows, but it still missed a case:
should_be_on_all_workspaces() returns whether the window should be on all
workspaces according to its properties/placement, but it doesn't take
transient relations into account.
That means in case of nested transients, we can still fail the assert:
1. on-all-workspaces toplevel
2. should_be_on_all_workspaces() is TRUE for the first transient's parent,
as the window from (1) has on_all_workspaces_requested == TRUE
3. should_be_on_all_workspaces() is FALSE for the second transient's
parent, as the window from (2) is only on-all-workspace because
of its parent
We can fix this by either using the state from the root ancestor
instead of the direct transient parent, or by using the parent's
on_all_workspaces_state.
The latter is simpler, so go with that.
https://gitlab.gnome.org/GNOME/mutter/issues/1083
Make sure it is only the special modifier (hardcoded to 1 currently)
which is being pressed (not counting locked modifiers) before notifying
that the special modifier is pressed, as we are interested in it being
pressed alone and not in combination with other modifier keys.
This helps in two ways:
- Pressing alt, then ctrl, then releasing both won't trigger the locate
pointer action.
- Pressing alt, then ctrl, then down/up to switch workspace won't interpret
the last up/down keypress as an additional key on top of the special ctrl
modifier, thus won't be forwarded down to the focused client in the last
second.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/812https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1014
If you first press a key that triggers the "special modifier key" paths
(ctrl, super), and then press another key that doesn't match (yet?) any
keybindings (eg. ctrl+alt, super+x), the second key press goes twice
through process_event(), once in the processing of this so far special
combination and another while we let the event through.
In order to keep things consistent, handle it differently depending on
whether we are a wayland compositor or not. For X11, consider the event
handled after the call to process_event() in process_special_modifier_key().
For Wayland, as XIAllowEvents is not the mechanism that allows clients see
the key event, we can just fall through the regular paths, without this
special handling.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1014
This commits adds support on the MetaWindow and constraints engine side
for asynchronously repositioning a window with a placement rule, either
due to environmental changes (e.g. parent moved) or explicitly done so
via `meta_window_update_placement_rule()`.
This is so far unused, as placement rules where this functionality is
triggered are not yet constructed by the xdg-shell implementation, and
no users of `meta_window_update_placement_rule()` exists yet.
To summarize, it works by making it possible to produce placement rules
with the parent rectangle a window should be placed against, while
creating a pending configuration that is not applied until acknowledged
by the client using the xdg-shell configure/ack_configure mechanisms.
An "temporary" constrain result is added to deal with situations
where the client window *must* move immediately even though it has not yet
acknowledged a new configuration that was sent. This happens for example
when the parent window is moved, causing the popup window to change its
relative position e.g. because it ended up partially off-screen. In this
situation, the temporary position corresponds to the result of the
movement of the parent, while the pending (asynchronously configured)
position is the relative one given the new constraining result.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
MetaGravity is an enum, where the values match the X11 macros used for
gravity, with the exception that `ForgetGravity` was renamed
`META_GRAVITY_NONE` to have less of a obscure name.
The motivation for this is to rely less on libX11 data types and macros
in generic code.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
A placement rule placed window positions itself relative to its parent,
thus converting between relative coordinates to absolute coordinates,
then back to relative coordinates implies unwanted restrictions for
example when the absolute coordinate should not be calculated againts
the current parent window position.
Deal with this by keeping track of the relative position all the way
from the constraining engine to the move-resize window implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
To organize things a bit better, put the fields related to the placement
rule state in its own anonymous struct inside MetaWindow. While at it,
rename the somewhat oddly named variable that in practice means the
current relative window position.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
A placement rule is always about placing a window relative to its
parent. In order to eventually place it against predicted future parent
positions, make the placement rule processing output relative
coordinates, having the caller deal with turning them into absolute.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
This is made a signal, so the upper layers (read: gnome-shell) may
decide what services to spawn. The signal argument contains a task
that will resume MetaX11Display startup after it is returned upon.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/945
We artificially made Xwayland initialization synchronous, as we used
to rely on MetaX11Display and other bits during meta_display_open().
With support for Xwayland on demand and --no-x11, this is certainly
not the case.
So drop the main loop surrounding Xwayland initialization, and turn
it into an async operation called from meta_display_init_x11(). This
function is turned then into the high-level entry point that will
get you from no X server to having a MetaX11Display.
The role of meta_init() in Xwayland initialization is thus reduced
to setting up the sockets. Notably no processes are spawned from here,
deferring that till there is a MetaDisplay to poke.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
This ATM completes the task right away, but we will want to do
further things here that are asynchronous in nature, so prepare
for this operation being async.
Since the X11 backend doesn't really need this, make it go on
the fast lane and open the MetaX11Display right away, the case
of mandatory Xwayland on a wayland session is now handled
separately.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
This used to be set on meta_compositor_manage(), but only if there is a
MetaX11Display. Given meta_display_init_x11() is Wayland only, and we can
always assume compositing to be enabled, just have it invariably set after
the X server is up.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/944
The check-alive feature is there for the user to be able to terminate
frozen applications more easily. However, sometimes applications are
implemented in a way where they fail to be reply to ping requests in a
timely manner, resulting in that, to the compositor, they are
indistinguishable from clients that have frozen indefinitely.
When using an application that has these issues, the GUI showed in
response to the failure to respond to ping requests can become annoying,
as it disrupts the visual presentation of the application.
To allow users to work-around these issues, add a setting allowing them
to configure the timeout waited until an application is considered
frozen, or disabling the check completely.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1080
The cancellable of a request might already be cancelled by the time
the cancelled_cb is connected resulting in finish_cb being called via
ca_context_cancel before g_cancellable_connect returns. In this case
the request that is written to has already been freed.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/1060
There are two surface roles owning a MetaWindow: MetaWaylandShellSurface
(basis of MetaWaylandXdgToplevel, MetaWaylandXdgPopup,
MetaWaylandWlShellSurface, etc), and MetaXwaylandSurface.
With these two role types, the MetaWindow has two different types of
life times. With MetaWaylandShellSurface, the window is owned and
managed by the role itself, while with MetaXwaylandSurface, the
MetaWindow is tied to the X11 window, while the Wayland surface and its
role plays more the role of the backing rendering surface.
Before, for historical reasons, MetaWindow was part of
MetaWaylandSurface, even though just some roles used it, and before
'wayland: Untie MetaWindowXwayland lifetime from the wl_surface' had
equivalent life times as well. But since that commit, the management
changed. To not have the same fied in MetaWaylandSurface being managed
in such drastically different ways, rearrange it so that the roles that
has a MetaWindow themself manages it in the way it is meant to; meaning
MetaWaylandShellSurface practically owns it, while with Xwayland, the
existance of a MetaWindow is tracked via X11.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/835
If a window already is being pinged, it doesn't make sense to send more
pings to the window, instead we should just wait for that answer or
timeout until we send a new one.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/891
Using a timestamp twice in a row (e.g. when activating two windows in
response to the same event or due to other bugs) will break the window
detection and show a close dialog on the wrong window. This is a grave
error that should never happen, so check every timestamp before sending
the ping for uniqueness and if the timestamp was already used and its
ping is still pending, log a warning message and don't send the ping.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/891
Increase the number of checks whether a window is still responsive and
ping windows on every call to `meta_window_focus()` instead of
`meta_window_activate_full()`. This ensures the window is also pinged in
case normal interaction like clicks on the window happen and a close
dialog will eventually get shown.
Related https://gitlab.gnome.org/GNOME/mutter/issues/395https://gitlab.gnome.org/GNOME/mutter/merge_requests/891
When an X11 window requests an initial workspace, we currently trust
it that the workspace actually exists. However dynamic workspaces
make this easy to get wrong for applications: They make it likely
for the number of workspaces to change between application starts,
and if the app blindly applies its saved state on startup, it will
trigger an assertion.
Make sure that we pass valid parameters to set_workspace_state(),
and simply let the workspace assignment fall through to the default
handling otherwise.
https://gitlab.gnome.org/GNOME/mutter/issues/1029
Most usually, applications either expose clipboard content either as text
or as images, so the prioritization here is pointless. However there's some
outliers like LibreOffice Calc which exports content as both image and text
formats (besides other internal ones).
In that mixed case, we probably prefer to keep text formats, rather than
image based ones.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/919
As we now call `meta_wayland_compositor_repick()` when the effects are
complete for Wayland surfaces, we can safely remove the Wayland specific
code to do the same from `meta_window_show()`.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1026
Currently, `meta_frame_get_mask()` and `meta_ui_frame_get_mask()` will
return the frame mask applied to the current frame size, by querying the
frame themselves.
To be able to get the frame mask at an arbitrary size, change the API to
take a rectangle representing the size at which the frame mask should be
rendered.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1009
In Wayland, window configuration is asynchronous. Window geometry is
constrained, the constrained geometry is sent to the client, and the
client will adapt its surface and acknowledge the configuration. When
acknowledged, we shouldn't reconstrain again, as that may invalidate the
constraint calculated for the configured size.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
The intention of meta_window_wayland_move_resize() is to finish a
move-resize requested previously, e.g. by a state change, or a
interactive resize. Make the function name carry this intention, by
renaming it to meta_window_wayland_finish_move_resize().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
While most of the code to compute a window's layer isn't explicitly
windowing backend specific, it is in practice: On wayland there are
no DESKTOP windows(*), docks(*) or groups.
Reflect that by introducing a calculate_layer() vfunc that computes
(and sets) a window's layer.
(*) they shall burn in hell, amen!
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
Most of the layer computation that the stack does actually depends
on the windowing backend, so we will move it to a vfunc.
However before we do that, split out the bit that will be shared.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/949
When a window that should be stacked above another one is placed in a lower
layer than the other window, we currently allow promoting it to the higher
layer when it has a "transient type". We should do the same when the window
is an actual transient of the other window.
This is particularly relevant for wayland windows, where types play a
much smaller role: Transient windows like non-modal dialogs (and since
commit 666bef7a, popup windows as well) currently end up underneath their
always-on-top parent.
https://gitlab.gnome.org/GNOME/mutter/issues/587
Add an assert that we don't have a MetaWindow::monitor pointer that
points to an old MetaLogicalMonitor. After this, and the other
monitors-changed callbacks have been called, the old MetaLogicalMonitor
will be destoryed, thus if we didn't update the pointer here, we'll
point to freed memory, and will eventually crash later on.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/929
This is inspired by 98892391d7 where the usage of
`g_signal_handler_disconnect()` without resetting the corresponding
handler id later resulted in a bug. Using `g_clear_signal_handler()`
makes sure we avoid similar bugs and is almost always the better
alternative. We use it for new code, let's clean up the old code to
also use it.
A further benefit is that it can get called even if the passed id is
0, allowing us to remove a lot of now unnessecary checks, and the fact
that `g_clear_signal_handler()` checks for the right type size, forcing us
to clean up all places where we used `guint` instead of `gulong`.
No functional changes intended here and all changes should be trivial,
thus bundled in one big commit.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/940
Override-redirect windows have no workspace by default, and can't be parent
of a top-level window, so we must check that the parent window is not an
O-R one when setting the workspace state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/895
Otherwise we'll end up trying to access the out of date state later.
Fixes the following test failure backtrace:
#0 _g_log_abort ()
#1 g_logv ()
#2 g_log ()
#3 meta_monitor_manager_get_logical_monitor_from_number ()
#4 meta_window_get_work_area_for_monitor ()
#5 meta_window_get_tile_area ()
#6 constrain_maximization ()
#7 do_all_constraints ()
#8 meta_window_constrain ()
#9 meta_window_move_resize_internal ()
#10 meta_window_tile ()
https://gitlab.gnome.org/GNOME/mutter/merge_requests/912
Add an adjust_fullscreen_monitor_rect virtual method to MetaWindowClass
and call this from setup_constraint_info() if the window is fullscreen.
This allows MetaWindowClass to adjust the monitor-rectangle used to size
the window when going fullscreen, which will be used in further commits
for a workaround related to fullscreen games under Xwayland.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/739
This way, we can simply pop up the Looking Glass and run:
>>> Meta.add_clutter_debug_flags(Clutter.DebugFlag.PICK, 0, 0)
And measure specific actions or events on GNOME Shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/862
The functionality core/core.c and core/core.h provides are helpers for
the window decorations. This was not possible to derive from the name
itself, thus rename it and put it in the right place.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/854
Requesting a selection with a NULL data source means "unset the clipboard",
but internally we use an unset clipboard as the indication that the
clipboard manager should take over.
Moreover, this unset request may go unheard if the current owner is someone
else than the MetaWaylandDataDevice.
Instead, set a dummy data source with no mimetypes nor data, this both
prevents the clipboard manager from taking over and ensures the selection
is replaced with it.
The MetaSelectionSourceMemory was also added some checks to allow for this
dummy mode.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/793
Otherwise we'll get the warning
../src/core/main.c: In function 'meta_test_init':
../src/core/main.c:755:1: error: function might be candidate for attribute 'noreturn' [-Werror=suggest-attribute=noreturn]
755 | meta_test_init (void)
| ^~~~~~~~~~~~~~
when building without Wayland.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/837
Mutter issues a synchronous grab on the pointer for unfocused client
windows to be able to catch the button events first and raise/focus
client windows accordingly.
When there is a synchronous grab in effect, all events are queued until
the grabbing client releases the event queue as it processes the events.
Mutter does release the events in its event handler function but does so
only if it is able to find the window matching the event. If the window
is a shell widget, that matching may fail and therefore Mutter will not
release the events, hence causing a freeze in pointer events delivery.
To avoid the issue, make sure we sync the pointer events in case we
can't find a matching window.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/821
With the addition of the locate-pointer special keybinding (defaults to
the [Control] key), we have now two separate special modifier keys which
can be triggered separately, one for the locate-pointer action and
another one for overlay.
When processing those special modifier keys, mutter must ensure that the
key was pressed alone, being a modifier, the key could otherwise be part
of another key combo.
As result, if both special modifiers keys are pressed simultaneously,
mutter will try to trigger the function for the second key being
pressed, and since those special modifier keys have no default handler
function set, that will crash mutter.
Check if the handler has a function associated and treat the keybinding
as not found if no handler function is set, as with the special modifier
keys.
https://gitlab.gnome.org/GNOME/mutter/issues/823
The `process_event()` would check for a existing keybinding handler and
abort if there is none, however the test is done after the handler had
been accessed, hence defeating the purpose of the check.
Move the check to verify there is an existing keybinding handler before
actually using it.
https://gitlab.gnome.org/GNOME/mutter/issues/823
Instead of open coding the X11 focus management in display.c, expose
it as a single function with similar arguments to its MetaDisplay
counterpart. This just means less X11 specifics in display.c.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/751
We have a "setup" phase, used internally to initialize early the x11
side of things like the stack tracker, and an "opened" phase where
other upper parts may hook up to. This latter phase is delayed during
initialization so the upper parts have a change to connect to on
plugin creation.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/771
If window decoration is modified within a short period of time, mutter
sometimes starts processing the second request before the first
UnmapNotify event has been received. In this situation, it considers
that the window is not mapped and does not expect another UnmapNotify /
MapNotify event sequence to happen.
This adds a separate counter to keep track of the pending reparents. The
input focus is then restored when MapNotify event is received iff all
the expected pending ReparentNotify events have been received.
Signed-off-by: Rémi Bernon <rbernon@codeweavers.com>
https://gitlab.gnome.org/GNOME/mutter/merge_requests/657
Since Clutter's backend relies on MetaBackend now, initialzation has
to go through meta_init(), both in mutter and in gnome-shell.
However the compositor enum and backend gtype used to enforce the
environment used for tests are private, so instead expose a test
initialization function that can be used from both mutter and
gnome-shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/750
Since Clutter's backend relies on MetaBackend now, initialzation has
to go through meta_init(), both in mutter and in gnome-shell.
However the compositor enum and backend gtype used to enforce the
environment used for tests are private, so instead expose a test
initialization function that can be used from both mutter and
gnome-shell.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/750
This object can be generally triggered without a X11 display, so make sure
this is alright. For guard window checks, use our internal
meta_stack_tracker_is_guard_window() call, which is already no-x11 aware.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/730
We indirectly were relying on the MetaX11Stack for this. We strictly
need the _NET_CLIENT_LIST* property updates there, so move our own
internal synchronization to common code.
Fixes stacking changes of windows while there's no MetaX11Display.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/730
The end goal is to have all clutter backend code in src/backends. Input
is the larger chunk of it, which is now part of our specific
MutterClutterBackendX11, this extends to device manager, input devices,
tools and keymap.
This was supposed to be nice and incremental, but there's no sane way
to cut this through. As a result of the refactor, a number of private
Clutter functions are now exported for external backends to be possible.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/672
After the introduction of locate-pointer (commit 851b7d063 -
“keybindings: Trigger locate-pointer on key modifier”), inhibiting
shortcuts would no longer forward the overlay key to the client.
Restore the code that was inadvertently removed so that inhibiting
shortcuts works on the overlay key again.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/734
A base type shouldn't know about sub types, so let MetaDisplay make
the correct choice of what type of MetaCompositor it should create. No
other semantical changes introduced.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/727
When double clicking to un-maximize an X11 window under Wayland, there
is a race between X11 and Wayland protocols and the X11 XConfigureWindow
may be processed by Xwayland before the button press event is forwarded
via the Wayland protocol.
As a result, the second click may reach another X11 window placed right
underneath in the X11 stack.
Make sure we do not forward the button press event to Wayland if it was
handled by the frame UI.
https://gitlab.gnome.org/GNOME/mutter/issues/88
Some meta_later operations may happen across XWayland being shutdown,
that trigger MetaStackTracker queries for X11 XIDs. This crashes as
the MetaX11Display is already NULL.
Return a NULL window in that case, as in "unknown stack ID".
https://gitlab.gnome.org/GNOME/mutter/merge_requests/728
The Xwayland manager now has 4 distinct phases:
- Init and shutdown (Happening together with the compositor itself)
- Start and stop
In these last 2 phases, handle orderly initialization and shutdown
of Xwayland. On initialization We will simply find out what is a
proper display name, and set up the envvar and socket so that clients
think there is a X server.
Whenever we detect data on this socket, we enter the start phase
that will launch Xwayland, and plunge the socket directly to it.
In this phase we now also set up the MetaX11Display.
The stop phase is pretty much the opposite, we will shutdown the
MetaX11Display and all related data, terminate the Xwayland
process, and restore the listening sockets. This phase happens
on a timeout whenever the last known X11 MetaWindow is gone. If no
new X clients come back in this timeout, the X server will be
eventually terminated.
The shutdown phase happens on compositor shutdown and is completely
uninteresting. Some bits there moved into the stop phase as might
happen over and over.
This is all controlled by META_DISPLAY_POLICY_ON_DEMAND and
the "autostart-xwayland" experimental setting.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/709
When rushing to unmanage X11 windows after the X11 connection is closed/ing,
this would succeed at creating a stack operation for no longer known windows.
Simply avoid to queue a stack operation if we know it's meaningless.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/709
What "restart" means is somewhat different between x11 and wayland
sessions. A X11 compositor may restart itself, thus having to manage
again all the client windows that were running. A wayland compositor
cannot restart itself, but might restart X11, in which case there's
possibly a number of wayland clients, plus some x11 app that is
being started.
For the latter case, the assert will break, so just make it
conditional. Also rename the function so it's more clear that it
only affects X11 windows.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/709
If the display is closed prematurely, go through all windows that
look X11-y and remove them for future calculations. This is not
strictly needed as Xwayland should shut down orderly (thus no client
windows be there), but doesn't hurt to prepare in advance for the
cases where it might not be the case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/709
We don't strictly need it for wayland compositors, yet there are
paths where we try to trigger those passive grabs there. Just
skip those on the high level code (where "is it x11" decisions
are taken) like we do with passive button grabs.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/709
Commit 09bab98b1e tried to avoid several workspace changes while in
window construction, but it missed a case:
If we have a window on a secondary monitor with no workspaces enabled
(so it implicitly gets on_all_workspaces = TRUE without requesting it)
and trigger the creation of a second window that has the first as
transient-for, it would first try to set the first workspace than the
transient-for window and then fallback to all/current workspace.
After that commit we only try to set the same workspace than the
transient-for window, but it gets none as neither is on a single workspace,
nor did really request to be on all workspaces.
Fixes crashes when opening transient X11 dialogs in the secondary monitor.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/714
We first set the workspace to the transient-for parent's, and then
try to set on the current workspace. If both happen, we double the
work on adding/removing it from the workspace, and everything that
happens in result.
Should reduce some activity while typing on the Epiphany address
bar, as the animation results in a number of xdg_popup being created
and destroyed to handle the animation.
https://gitlab.gnome.org/GNOME/mutter/issues/556
On X11, mutter needs to keep a grab on the locate-pointer key to be able
to trigger the functionality time the corresponding key combo is
pressed.
However, doing so may have side effects on other X11 clients that would
want to have a grab on the same key.
Make sure we only actually grab the key combo for "locate-pointer" only
when the feature is actually enabled, so that having the locate pointer
feature turned off (the default) would not cause side effects on other
X11 clients that might want to use the same key for their own use.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/647
Some special modifiers (typically "Control_L" used for locate-pointer in
mutter/gnome-shell or "Super_L" for overlay) must be handled separately
from the rest of the key bindings.
Add a new flag `META_KEY_BINDING_NO_AUTO_GRAB` so we can tell when
dealing with that special keybinding which should not be grabbed
automatically like the rest of the keybindings, and skip those when
changing the grabs of all keybindings.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/685
Using the master device, as we did, won't yield the expected result when
looking up the device node (it comes NULL as this is a virtual device).
Use the slave device, as the g-s-d machinery essentially expects.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/678
The device ID is kind of pointless on Wayland, so it might be better to
stick to something that works for both backends. Passing the device here
allows the higher layers to pick.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/676
As per commit 040de396b, we don't try to grab when shortcuts are inhibited,
However, this uses the focus window assuming that it is always set, while this
might not be the case in some scenarios (like when unsetting the focus before
requesting take-focus-window to acquire the input).
So allow the button grab even if the focus window is not set for the display
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/663https://gitlab.gnome.org/GNOME/mutter/merge_requests/668
On Wayland, if a client issues a inhibit-shortcut request, the Wayland
compositor will disable its own shortcuts.
We should also disable the default handler for the button grab modifier
so that button events with the window grab modifiers pressed are not
caught by the compositor but are forwarded to the client surface.
That also fixes the same issue with Xwayland applications issuing grabs,
as those end up being emulated like shortcut inhibition.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/642
gnome-shell hardcodes a vertical one-column workspace layout, and
while not supporting arbitrary grids is very much by design, it
currently doesn't have a choice: We simply don't expose the workspace
layout we use.
Change that to allow gnome-shell to be a bit more flexible with the
workspace layouts it supports.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/618
When destroying a window that has a parent, we initially try to focus one of
its ancestors. However if no ancestor can be focused, then we should instead
focus the default focus window instead of trying to request focus for a window
that can't get focus anyways.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/308
When we're unfullscreening, we might be returning to a window state that
has its size either managed by constraints (tiled, maximized), or not
(floating). Lets just pass the configure size 0x0 when we're not using
constrained sizes (i.e. the window going from being fullscreen to not
maximized) and let the application decide how to size itself.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/638https://gitlab.gnome.org/GNOME/mutter/merge_requests/621
As per commit 7718e67f, destroying the compositor causes destroying window
actors and this leads to stack changes, but at this point the stack was already
disposed and cleared.
So, clear the stack when any component that could use it (compositor, and X11)
has already been destroyed.
As consequence, also the stamps should be destroyed at later point.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/623https://gitlab.gnome.org/GNOME/mutter/merge_requests/605
We're currently emitting the 'grab-op-end' signal when the grab prerequisites
are met, but when display->grab_op is still set to a not-NONE value and thus
meta_display_get_grab_op() would return that in the signal callback.
And more importantly when this is emitted, devices are still grabbed.
Instead, emit this signal as soon as we've unset all the grab properties and
released the devices.
Helps with https://gitlab.gnome.org/GNOME/gnome-shell/issues/1326https://gitlab.gnome.org/GNOME/mutter/merge_requests/596
In all places (including src/wayland) we tap into meta_x11_display* focus
API, which then calls meta_display* API. This relation is backwards, so
rework input focus management so it's the other way around.
We now have high-level meta_display_(un)set_input_focus functions, which
perform the backend-independent maintenance, and calls into the X11
functions where relevant. These functions are what callers should use.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
We use a GtkIconTheme (thus icon-theme, thus xsettings, thus x11) just to
grab a "missing icon" icon to show in place. Relax this requirement that
surfaces for icon/mini-icon will be set, and just let it have NULL here.
It seems better to have the callers (presumably UI layers) aware of this
and set a proper icon by themselves, but AFAICS there is none in sight,
not even plain mutter seems to use MetaWindow::[mini-]icon. Probably
worth a future cleanup.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
If the check happens on --nested (X11 backend) while there is no X11
display we would get a crash. Since the barriers are non-effective on
nested, just take it out into a separate condition.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
This explicit ungrab is made to ensure the other X11 display connection
is able to start an active grab immediately on the device without receiving
AlreadyGrabbed.
This is just relevant if there's two X11 display connections to transfer
grabs across, which may just happen on X11 windowing.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
This object takes care of the X11 representation of the window stack,
namely the _NET_CLIENT_LIST and _NET_CLIENT_LIST_STACKING root window
properties.
This code has been lifted from src/core/stack.c into src/x11 as it's
dependent on the X11 display availability. This also leaves MetaStack
squeaky clean of x11 specifics.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/420
We'd break the loop for moving attached windows at the first window,
meaning we'd only ever move a single attached dialogs or popup if it was
the first window in the list. This doesn't work out well when there are
multiple popups open, so don't break out of the loop at all until all
windows are potentially moved.
This fixes an issue in gtk4 where one or more non-grabbing popups would
end up unattached if there were more than one and the parent window was
moved.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/592
In order to scale a rectangle by a double value, we can reuse a ClutterRect
to do the scale computations in floating point math and then to convert it back
using the proper strategy that will take in account the subpixel compensation.
In this way we can be sure that the resulting rectangle can fully contain the
original scaled one.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/469
This function was added for historic reasons, before that we had GSlist's
free_full function.
Since this can be now easily implemented with a function call and an explicit
GDestroyFunc, while no known dependency uses it let's move to use
g_slist_free_func instead.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/57
GList's used in legacy code were free'd using a g_slist_foreach + g_slist_free,
while we can just use g_slist_free_full as per GLib 2.28.
So replace code where we were using this legacy codepath.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/576
GList's used in legacy code were free'd using a g_list_foreach + g_list_free,
while we can just use g_list_free_full as per GLib 2.28.
So replace code where we were using this legacy codepath.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/576
Depending on the type of session, one or the other might be NULL, which
is not meant to be handled by these functions. Check for both DISPLAY
envvars before setting them on the GAppLaunchContext.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/586
The check for the focus xwindow is called, but not used. Fix that by
renaming the variable to reflect better what it does and actually using
the return value of the check.
This was the original intention of the author in commit
05899596d1 and got broken in commit
8e7e1eeef5.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/535
meta_workspace_activate_with_focus is supposed to focus the passed window after
switching the workspace.
However if the passed workspace is already the active one, we just return
without activating the window.
So fix this calling meta_window_activate on the foucs_this window if that is
valid.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/562
This is a simple clipboard manager implementation on top of MetaSelection.
It will inspect the clipboard content for UTF-8 text and image data whenever
any other selection source claims ownership, and claim it for itself
whenever the clipboard goes unowned.
The stored text has a maximum size of 4MB and images 200MB, to prevent the
compositor from allocating indefinite amounts of memory.
This is not quite a X11 clipboard manager, but also works there.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/320
MetaSelectionSource represents a primary/clipboard/dnd selection owner,
it is an abstract type so wayland/x11/etc implementations can be provided.
These 3 selections are managed by the MetaSelection object, the current
selection owners will be set there, and signals will be emitted so the
previous selection owner can clean itself up.
The actual data transfer is done through the meta_selection_transfer_async()
call, which will take a GOutputStream and create a corresponding
GInputStream from the MetaSelectionSource in order to splice them.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/320
When an application stops responding, the shell darkens its windows.
If a window from a not-responding application gets unmanaged
then the shell will currently throw an exception trying to retrieve
the now-dissociated window actor.
That leads to a "stuck window" ghost on screen and a traceback
in the log.
This commit addresses the problem by making sure the effect is cleaned
up before the actor is disocciated from its window.
https://gitlab.gnome.org/GNOME/mutter/issues/575
When focus stealing prevention kicks in, mutter would set the demand
attention flag on the window.
Focus stealing prevention would also prevent the window from being
raised and focused, which is expected as its precisely its purpose.
Yet, when that occurs, the user expects the window which has just been
prevented from being focused to be the next one in the MRU list, so
that pressing [Alt]-[Tab] would raise and give focus to that window.
This works fine when the window is placed on the primary monitor, but
not when placed on another monitor, in which case the window which has
been denied focus is placed ahead of the MRU list and pressing
[Alt]-[Tab] would leave the focus on the current window.
This is because of a mechanism in `meta_display_get_tab_list()` which
forces the windows with the demand attention flag set to be placed first
in the MRU list when they're placed on a workspace different from the
current one.
But because workspaces apply only to the primary monitor (by default),
the windows placed on other outputs have their workspace set to `NULL`
which forces them ahead of the MRU list by mistake.
Fix this by using the appropriate `meta_window_located_on_workspace()
function to check if the window is on another workspace.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/523
The sequences may stay completed in the list (eg. pending a focus request),
it's then confusing to show the "wait" cursor icon until they are really
gone.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/541
Calculations were being done at places accounting on usec precision,
however those are still treated as having msec precision at places. Let's
consolidate for the latter since it requires less changes across the board
and usec precision doesn't buy us anything here.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/541
We use the combination of pressing Super and clicking+moving the mouse
to drag windows around and we also support pressing Super and using the
touchscreen to drag windows.
Since we don't want to show the overview when the Super key was used to
initiate a window drag, prevent showing the overview in case a
TOUCH_BEGIN or TOUCH_END event happened during the key was pressed.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/228https://gitlab.gnome.org/GNOME/mutter/merge_requests/495
If an intersection is empty, the (x, y) coordinates are undefined, so
just use the work area and in-progress constrained window rect when
sliding according to the SLIDE_X or SLIDE_Y custom placement rule.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
When check_only is TRUE, the constraint should not be applied, just
checked. We failed to comply here when a placed transient window was
to be moved together with its parent, updating the window position
directly even if check_only was TRUE.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
If a client maps a persistent popup with a placement rule, then resizes
the parent window so that the popup ends up outside of the parent,
unmanage the popup and log a warning about the client being buggy.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
When a parent window is moved, attached windows (attached modal dialogs
or popups) is moved with it. This is problematic when such a window
hasn't been shown yet (e.g. a popup that has been configured but not
shown), as it'll mean we try to constrain an empty window. Avoid this
issue by not trying to auto-move empty windows.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
Fixes condition duplicated:
/* If a contains b, just remove b */
if (meta_rectangle_contains_rect (a, b))
{
delete_me = other;
}
/* If b contains a, just remove a */
else if (meta_rectangle_contains_rect (a, b))
{
delete_me = compare;
}
Closes https://gitlab.gnome.org/GNOME/mutter/issues/480
Traditionally visual alerts were implemented by flashing the focus
window's frame. As that only works for windows that we decorate,
flashing the whole window was added as a fallback for client-decorated
windows.
However that introduces some confusing inconsistency, better to just
always flash the entire window.
https://gitlab.gnome.org/GNOME/mutter/issues/491
The app menu always was a GNOME-only thing, so after it was removed this
cycle, assuming that it is not displayed by the environment is a better
default.
https://gitlab.gnome.org/GNOME/mutter/issues/493
The function finish_cb can be called as a result of a call to ca_context_cancel
in cancelled_cb. This will result in a deadlock because, as per documentation,
g_cancellable_disconnect cannot be called inside the cancellable handler.
It is possible to detect if the call to finish_cb is caused by ca_context_cancel
checking if error_code == CA_ERROR_CANCELED. To avoid the deadlock we should
call g_signal_handler_disconnect instead g_cancellable_disconnect if this is the
case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/474
Splitting out the X11 display initialization from display_open() broke
restoring the previously active workspace in two ways:
- when dynamic workspaces are used, the old workspaces haven't
been restored yet, so we stay on the first workspace
- when static workspaces are used, the code tries to access
the compositor that hasn't been initialized yet, resulting
in a segfault
Fix both those issues by splitting out restoring of the active workspace.
https://gitlab.gnome.org/GNOME/mutter/issues/479
Meta rectangles are integer based while clutter works in floating coordinates,
so when converting to integers we need a strategy.
Implement the shrink strategy by ceiling the coordinates and flooring the width,
and the grow strategy reusing clutter facility for this.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/3
The external grab handler is shared across all external bindings and external
bindings have now different binding flags. For this reason, when rebuilding the
binding table there could be loss of information if we assign the bindings flags
of the external handler to all external bindings. Let's store the bindings flags
in MetaKeyGrab too and use this when rebuilding the binding table to avoid the
above issue.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/169
The "force restore shortcuts" being triggered by a key-combo, there is
no guarantee that the currently focused window is actually non-NULL in
which case we would crash.
Make sure there is a window currently focused before trying to restore
the shortcuts on that window.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/464
As per commit 43633d6b, we mark an unmanaging window as not focusable, while
this is true, it might cause not resetting the current focused window when
unmanaging it causing a crash.
Also this wouldn't allow to check if a window can be focused when unmanaging it,
so let's revert the previous behavior.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/462
For various error and warning messages, mutter includes a description of
the window, and that description includes a snippet of the title of the
window. Those snippets find their way into system logs, which then means
they can potentially find their way into bug reports and similar. Remove
the window title information to eliminate this potential privacy issue.
Commit 25f416c13d added additional compilation warnings, including
-Werror=return-type. There are several places where this results
in build failures if `g_assert_not_reached()` is disabled at compile
time and the compiler misses a return value.
https://gitlab.gnome.org/GNOME/mutter/issues/447
Shell is using these, which was revealed by
1bbb5c8107 breaking its build when
generating its introspection due to meta_startup_notification_get_type()
not being found.
We keep the class structs private, so in practice MetaStartupSequence
and MetaBackend can't be derived from (the are semi-private).
Make meson link libmutter using -fvisibility=hidden, and introduce META_EXPORT
and META_EXPORT_TEST defines to mark a symbols as visible.
The TEST version is meant to be used to flag symbols that are only used
internally by mutter tests, but that should not be considered public API.
This allows us to be more precise in selecting what is exported and what is
not, without the need of a version-script file that would be more complicated
to maintain.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/395
This is a GAppLaunchContext subclass meant to replace usage of
GdkAppLaunchContext in gnome-shell.
Launch contexts get created from the MetaStartupNotification as
they are closely related. The messaging underneath depends on
the availability of a X11 display, if there is one we go through
it (and libsn). If there is none, we still create startup sequences
manually for wayland clients.
The "current" rect includes the frame, so in order to keep the
titlebar on screen, window movement must be restricted to at
most (height - titlebar_height) past the work area bottom.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/391
This is a simple libcanberra abstraction object, so we are able
to play file/theme sounds without poking into GTK+/X11. Play
requests are delegated to a separate thread, so we don't block
UI on cards that are slow to wake up from power saving.
Placing persistant Wayland popups (e.g. not menus etc) in the o-r layer
breaks stacking order with other window trees (e.g. other client
windows), as the menu would get stuck in the o-r layer, i.e. on top,
even if the parent of the popup got lowered.
Fix this by placing the popups in the normal layer, relying on
transient-ness to keep stacking correct.
It's a UI pattern that has been superseded by client-side decorations,
apps that used to set the hint have generally moved on to headerbars.
Given that and the limitation to server-side decorated X11 windows,
GTK4 removed the client-side API for setting the hint, it's time to
follow suite and retire the feature.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/221
Moving windows using `move-to-side-X` and `move-corner-XX` keybindings
should keep windows within the confines of current screen.
`move-to-monitor-XXX` keybindings can be used to move windows to other
monitors.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/320
Commit 8d3e05305 ("window: Force update monitor on hot plugs") added the
flag `META_WINDOW_UPDATE_MONITOR_FLAGS_FORCE` passed to
`update_monitor()` from `update_for_monitors_changed()`.
However, `update_for_monitors_changed()` may choose to call another code
path to `move_between_rects()` and `meta_window_move_resize_internal()`
eventually.
As `meta_window_move_resize_internal()` does not use the "force" flag,
we may still end up in case where the window->monitor is left unchanged.
To avoid that problem, add a new `MetaMoveResizeFlags` that
`update_for_monitors_changed()` can use to force the monitor update from
`meta_window_move_resize_internal()`.
Fixes: 8d3e05305 ("window: Force update monitor on hot plugs")
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/189
It relied on indices in arrays determining tile direction and
non-obvious bitmask logic to translate to _GTK_EDGE_CONSTRAINTS. Change
this to explicitly named edge constraints, and clear translation methods
that converts between mutters and GTK+s edge constraint formats.
An unnecessary memory optimization, storing the tile mode as a 2 bit
unsigned integer, was used. While saving a few bytes, it made debugging
harder. Remove the useless byte packing.
This is the filename convention you get when you define a shared module
in meson, and since there is no particular reason to not include the
"lib" prefix, lets make it easier to port it over. While at it,
de-duplicate the retrieval of the plugin name.
While leaving the runtime checks in place, requiring xrandr 1.5 at build
time allows us to remove some seemingly unnecessary conditional
inclusion of functionality.
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
testboxes was a binary that did unit testing, but it wasn't integrated
to the test system, so in effect, it was never run. Instead integrate it
into the other mutter unit tests. This includes changing a few of
meta_warning()s into g_warning()s so that the GTest framework can handle
them.
meta_workspace_manager_override_workspace_layout is implemented by
calling meta_workspace_manager_update_workspace_layout which
respects the workspace_layout_overridden flag. After the first call
to meta_workspace_manager_override_workspace_layout all subsequent
calls fail silently.
Reset workspace_layout_overridden to FALSE before calling
meta_workspace_manager_update_workspace_layout.
https://gitlab.gnome.org/GNOME/mutter/issues/270
In order to allow a window with a custom rule placement to be moved
together with its parent, the final rule used derived from the
constraining were used for subsequent constraints. This was not enough
as some constraining cannot be translated into a rule, such as sliding
across some axis.
Instead, make it a bit simpler and just remember the position relative
to the parent window, and use that the next time.
This is a rework of 5376c31a33 which
caused the unwanted side effects.
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/332
With Wayland, a window is not showing until it's shown. Until this
patch, the initial state of MetaWindow, on the other hand, was that a
window is initialized as showing. This means that for a window to
actually be classified as shown (MetaWindow::hidden set to FALSE),
something would first have to hide it.
Normally, this wasn't an issue, as normally we'd first create a window,
determine it shouldn't be visible (due to missing buffer), hide it
before the next paint, then eventually show it. This doesn't work if
mutter isn't drawing any frames at the moment (e.g. the user switched
VT), as we'd miss the hiding before showing as e result of a buffer
being attached. The most visible side effect is that a window can't be
moved as the window actor remains frozen.
This commit fixes this issue by correctly classifying a newly created
Wayland window as "hidden".
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/331
Changes in window decoration result in the window being reparented
in and out its frame. This in turn causes unmap/map events, and
XI_FocusOut if the window happened to be focused.
In order to preserve the focused window across the decoration change,
add a flag so that the focus may be restored on MapNotify.
Closes: #273
On Wayland, xdg-foreign would leave a modal dialog managed even after
the imported surface is destroyed.
This is sub-optimal and this breaks the atomic relationship one would
expect between the parent and its modal dialog.
Make sure we unmanage the dialog if transient_for is unset even for
Wayland native windows.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/174
Related: https://gitlab.gnome.org/GNOME/mutter/issues/221
A window placed using a placement rule should keep that relative
position even if the parent window moves, as the position tied to the
parent window, not to the stage. Thus, if the parent window moves, the
child window should move with it.
In the implementation in this commit, the constraints engine is not
used when repositioning the children; the window is simply positioned
according to the effective placement rule that was derived from the
initial constraining, as the a xdg_popup at the moment cannot move
(relative its parent) after being mapped.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/274
Commit a3da4b8d5b changed updating of
window monitors to always use take affect when it was done from a
non-user operation. This could cause feed back loops when a non-user
driven operation would trigger the changing of a monitor, which itself
would trigger changing of the monitor again due to a window scale
change.
The reason for the change, was that when the window monitor changed due
to a hot plug, if it didn't actually change, eventually the window
monitor pointer would be pointing to freed memory.
Instead of force updating the monitor on all non-user operations, just
do it on hot plugs. This allows for the feedback loop preventing logic
to still do what its supposed to do, without risking dangling pointers
on hot plugs.
Related: https://gitlab.gnome.org/GNOME/mutter/issues/189
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/192
The bool determines whether the call was directly from a user operation
or not. To add more state into the call without having to add more
boolenas, change the boolean to a flag (so far with 'none' and 'user-op'
as possible values). No functional changes were made.
https://gitlab.gnome.org/GNOME/mutter/issues/192
The function is intentionally provided as macro to not require a
cast. Recently the macro was improved to check that the passed in
pointer matches the free function, so the cast to GDestroyNotify
is now even harmful.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/176
Since commit b3b9d9e16 we no longer have to pass the unmanaging window
to make sure we don't try to focus it again, however the parameter also
influences the focus policy by giving ancestors preference over the normal
stack order.
https://gitlab.gnome.org/GNOME/mutter/issues/15
We refuse to move focus while a grab operation is in place. While this
generally makes sense, there's no reason why the window that owns the
grab shouldn't be given the regular input focus as well - we pretty
much assume that the grab window is also the focus window anyway.
In fact there's a strong reason for allowing the focus change here:
If the grab window isn't the focus window, it probably has a modal
transient that is focused instead, and a likely reason for the focus
request is that the transient is being unmanaged and we must move
the focus elsewhere.
https://gitlab.gnome.org/GNOME/mutter/issues/15
Previously we relied on the test-client to make sure that a window was
shown. For X11, we did not need to do anything, but for Wayland we had
to make sure we had drawn the first frame, otherwise mutter wouldn't
have a buffer making the window not showable.
Doing it this way doesn't work anymore however, since the 'after-paint'
event will be emitted even if we didn't actually paint anything. This is
the case with current Gtk under Wayland, where we won't draw until the
compositor has configured the surface. In effect, this mean we'll get a
dummy after-paint emission before the first frame is actually painted.
Instead, move the verification that a "show" command has completed by
having the test-runner wait for a "shown" signal on the window, which is
emitted in the end of meta_window_show(). This requires an additional
call to gdk_display_sync() in the test-client after creating the window,
to make sure that the window creation vents has been received in the
compositor.
As of "stack-tracker: Keep override redirect windows on top"
(e3d5bc077d), we always sorted all
override redirect on top of regular windows, as so is expected by
regular override redirect windows. This had an unwanted consequence,
however, which is that we should still not sort such override redirect
windows on top if they are behind the guard window, as that'd result in
windows hidden behind it now getting restacked anyway.
Fix this by only sorting the override redirect windows that are found
above the guard window on top. This fixes the override-redirect stacking
test.
xdg-foreign clears the `transient_for` of a modal dialog when its
imported parent is destroyed, which would later cause a crash in
`constrain_modal_dialog()` because the transient `NULL`.
So in case a modal dialog has no parent, do not try to constrain it
against its parent.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/174
MetaDisplay still had workspace signals, but nothing emitted them,
meaning we wouldn't get warnings if handlers were added there instead
of to MetaWorkspaceManager.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
If we wait with opening the X11 window decoration GDK connection, we
might end up with a terminated X11 server before we finish
initializing, depending on the things happening after spawning Xwayland
and before opening the MetaX11Dispaly. In gnome-shell, this involves
e.g. creating a couple of temporary X11 connections, and on disconnect,
if they happen to be the last client, the X server will terminate
itself.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Under Xorg the cursor size preference was pre-scaled originating from
gtk, while with Wayland it came directly from GSettings remaining
unscaled. Under Xwayland this caused the X11 display code to set the
wrong size with HiDPI configurations, which was often later overridden
by the equivalent code in gtk, but not always.
Fix this by always having the cursor size preference unscaled, scaling
the size correctly where it's used, depending on how it's used.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
GTK+ won't be initialized if X11 is not available
Instead, when setting gtk-shell-shows-app-menu,
meta_prefs_set_show_fallback_app_menu should be
called as well.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Allow removing a prefs handler that was already removed. This allows us
to remove prefs from the dispose function without having to keep track
of it in every place.
- Stop using CurrentTime, introduce META_CURRENT_TIME
- Use g_get_monotonic_time () instead of relying on an
X server running and making roundtrip to it
https://bugzilla.gnome.org/show_bug.cgi?id=759538
This moves following objects from MetaScreen to MetaDisplay
- workareas_later and in_fullscreen_later signals and functions
- startup_sequences signals and functions
- tile_preview functions
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Split X11 specific parts into MetaX11Display. This also required
changing MetaScreen to stop listening to any signals by itself, but
instead relying on MetaDisplay forwarding them. This was to ensure the
ordering. MetaDisplay listens to both the internal and external
monitors-changed signal so that it can pass the external one via the
redundant MetaDisplay(prev MetaScreen)::monitors-changed.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
They are X11 specific functions, used for X11 code. They have been
improved per jadahl's suggestion to use gdk_x11_lookup_xdisplay and
gdk_x11_display_error_trap_* functions, instead of current code.
https://bugzilla.gnome.org/show_bug.cgi?id=759538
- Moved xdisplay, name and various atoms from MetaDisplay
- Moved xroot, screen_name, default_depth and default_xvisual
from MetaScreen
- Moved some X11 specific functions from screen.c and display.c
to meta-x11-display.c
https://bugzilla.gnome.org/show_bug.cgi?id=759538
Introduce a new type MetaCursorSpriteXcursor that is a MetaCursorSprite
implementation backed by Xcursor images. A plain MetaCursorSprite can
still be created "bare bone", but must be manually provided with a
texture. These usages will eventually be wrapped into new
MetaCursorSprite types while turning MetaCursorSprite into an abstract
type.
https://gitlab.gnome.org/GNOME/mutter/issues/77
It was prefixed with meta_cursor_, but it took a X11 Display, so update
the naming. Eventually it should be duplicated depending if it's a
frontend X11 connection call or a backend X11 connection call and moved
to the corresponding layers, but let's just do this minor cleanup for
now.
https://gitlab.gnome.org/GNOME/mutter/issues/77
The MetaCloseDialog implementation object may stay artifically alive
for a longer period. This was usually fine till gnome-shell commit
b03bcc85aad, as the check_alive() timeout will keep running even
though the window went unmanaged/destroyed, leading to crashes.
In order to fix this, forcibly hide the dialog if it is visible and
the window is being unmanaged, so the timeout is stopped in time.
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
In the old, synchronous X.org world, we could assume that
a state change always meant a synchronizing the window
geometry right after. After firing an operation that
would change the window state, such as maximizing or
tiling the window,
With Wayland, however, this is not valid anymore, since
Wayland is asynchronous. In this scenario, we call
meta_window_move_resize_internal() twice: when the user
executes an state-changing operation, and when the server
ACKs this operation. This breaks the previous assumptions,
and as a consequence, it breaks the GNOME Shell animations
in Wayland.
The solution is giving the MetaWindow control over the time
when the window geometry is synchronized with the compositor.
That is done by introducing a new result flag. Wayland asks
for a compositor sync after receiving an ACK from the server,
while X11 asks for it right away.
Fixes#78
And use the old "native" backend for both X11 and Wayland. This will
allow us to share fixes between implementations without having to delve
into the XSync X11 extension code.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Raising and lowering windows in tandem without a proper grouping
mechanism ended up being more annoying than functional.
This reverts commit e76a0f564c.
When painting the titlebar, button icons that aren't available in the
desired size need to be scaled. However the current code inverses the
scale factor, with the result that the adjusted icons are much worse
than the original icons, whoops.
This went unnoticed for a long time given that most icons are availa-
ble in the desired 16x16 size, and the most likely exceptions - window
icons - are not shown by default.
https://gitlab.gnome.org/GNOME/mutter/issues/23
This is in order to force running as a X11 window manager/compositing
manager. Useful for debugging and other cases where the automatic
detection does not work as expected.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/15
When maximizing a window, the previous location is saved so that
un-maximize would restore the same original window location.
However, if a Wayland client starts with a window maximized, the
previous location will be 0x0, so if we have to force placement in
xdg_toplevel_set_maximized(), we should update the location as well so
that the window is placed on the right monitor when un-maximizing.
For that purpose, add a new flag to force the update of the window
location, and use that flag from xdg_toplevel_set_maximized().
https://bugzilla.gnome.org/show_bug.cgi?id=783901
Wayland clients know their size better, so for Wayland we'd rather not
try to resize the client on un-maximize, but for this to work we need a
new MetaMoveResizeFlags.
https://bugzilla.gnome.org/show_bug.cgi?id=783901
When closing a window and showing a new one, the new one may not be
granted input focus until it gets a buffer on Wayland.
If another window is chosen to receive focus and raised on top of stack,
the newly mapped window is focused but placed underneath that other
window.
Meaning that for Wayland surfaces, we need to defer adding the window to
the stack until we actually get to show it, once we have a buffer
attached.
Rather that checking the windowing backend prior to decide if a window
is stackable or not, introduce a new vfunc is_stackable() which tells
if a window should be added to the stack regardless of the underlying
windowing system.
Also add meta_window_is_in_stack() API rather than checking the stack
position directly (replacing the define WINDOW_IN_STACK only available
in stack.c) and remove a window from the stack only if it is present
in the stack, so that the test in meta_stack_remote() becomes
irrelevant.
https://bugzilla.gnome.org/show_bug.cgi?id=780820
When a Wayland client issues a shortcut inhibit request which is granted
by the user, the Super key should be passed to the surface instead of
being handled by the compositor.
https://bugzilla.gnome.org/show_bug.cgi?id=790627
The reason why multiple keycodes could be mapped to a single keysym was
to support having both KEY_FAVORITES and KEY_BOOKMARK map to
XF86Favorites. However, iterating through all layout levels adding all
key codes has severe consequences on layouts with levels that map
things like numbers and arrow. The result is that keybindings that
should only have been added for keycodes from the first level, are
replaced by some unexpected keycode where the same keysym was found on
another level.
An example of this is the up-arrow key and l symbol. Normally you'd find
both the up-arrow symbol and the l symbol on the first level and be done
with it. However, on the German Neo-2 layout, layout level 4 maps the
KEY_E to the l symbol, while layout level 4 maps KEY_E to up-arrow.
Which ever gets to take priority is arbitrary, but for this particular
case KEY_E incorrectly mapped to up-arrow instead of the l symbol,
causing the keyboard shortcut Super+l, which would normally lock the
screen, to trigger the workspace-up (Super+up-arrow) key binding.
https://bugzilla.gnome.org/show_bug.cgi?id=789300
MetaWindowXwayland derives from MetaWindowX11 to allow for some Xwayland
specific vfunc that wouldn't apply to plain X11 windows, such as
shortcut inhibit routines.
https://bugzilla.gnome.org/show_bug.cgi?id=783342
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
When we received two hot plug events that both resulted in headless
configuration, we tried to find a new window monitor given the old.
That resulted in a null pointer dereference; avoid that by only trying
to find the same monitor if there was an old one.
https://bugzilla.gnome.org/show_bug.cgi?id=788607
To keep feature parity with the Wayland backend, and
to improve the overall tiling experience with GTK apps,
add the _GTK_EDGE_CONSTRAINTS X11 atom and update it
when necessary.
https://bugzilla.gnome.org/show_bug.cgi?id=751857
GTK has the ability to handle client-decorated windows
in such a way that the behavior of these windows must
match the behavior of the current window manager.
In Mutter, windows can be tiled horizontally (and, in
the future, vertically as well), which comes with a few
requirements that the toolkit must supply. Tiled windows
have their borders' behavior changed depending on the
tiled position, and the toolkit must be aware of this
information in order to properly match the window manager
behavior.
In order to provide toolkits with more precise and general
data regarding resizable and constrained edges, this patch
makes MetaWindow track its own edge constraints.
This will later be used by the backends to send information
to the toolkit.
https://bugzilla.gnome.org/show_bug.cgi?id=751857
When computing a potential match for a tiled window, there is a
chance we face the case where 2 windows really complement each
other's tile mode (i.e. left and right) but they have different
sizes, and their borders don't really touch each other.
In that case, the current code would mistakenly assume they're
tile matches, and would resize them with either a hole or an
overlapping area between windows. This is clearly a misbehavior
that is a consequence of the previous assumptions pre-resizable
tiles.
This patch adapts the tile match algorithm to also consider the
touching edges when computing the matching tile, unless:
* the window is not currently tiled (for example when computing
the tile preview)
* the window is currently resized in tandem with an existing
tile match
https://bugzilla.gnome.org/show_bug.cgi?id=645153
bar
When a pair of tiled windows are grouped together, they
are treated as parts of a whole and interacting with one
affects the other.
Following the idea that sibling tiled windows are treated
as part of the same group, they should also be raised and
lowered together.
It is still possible to break tiled windows grouping by
simply untiling the window with the keyboard or by grabbing
and resizing or moving the window with the cursor.
This patch makes sibling tiled windows be lowered and raised
in tandem. For future reference, this behavior is documented
in [1].
[1] https://wiki.gnome.org/GeorgesNeto/MinutesOfFeaneron/Tilinghttps://bugzilla.gnome.org/show_bug.cgi?id=645153
There is a variable in meta_window_edge_resistance_for_resize
that isn't really helpful: it just assumes TRUE, and is passed
to apply_edge_resistance_to_each_side.
This patch removes that useless variable and simply pass TRUE
instead.
https://bugzilla.gnome.org/show_bug.cgi?id=645153
When windows are tiled, it improves the interaction with
them when they have a set of snapping edges relative to
the monitor. For example, when there's a document editor
and a PDF file opened, I might want to rescale the former
to 2/3 of the screen and the latter to 1/3.
These snapping sections are not really tied to any other
window, and only depend on the current work area of the
window. Thus, it is not necessary to adapt the current
snapping edge detection algorithm.
This patch adds the necessary code in edge-resistance.c
to special-case tiled windows and allow them to cover
1/4, 1/3 and 1/2 (horizontally) of the screen. These
values are hardcoded.
https://bugzilla.gnome.org/show_bug.cgi?id=645153
After the introduction of the possibility to resize tiled windows,
it is a sensible decision to make windows aware of their tiling
match. A tiling match is another window that is tiled in such a
way that is the complement of the current window.
The newly introduced behavior attepts to make tiling as smooth as
possible, with the following rules:
* Windows now compute their tile match when tiling and, if there's
a match, they automatically complement the sibling's width.
* Resizing a window with a sibling automatically resizes the sibling
too to be the complement of the window's width.
* It is not possible to resize below windows' minimum widths.
https://bugzilla.gnome.org/show_bug.cgi?id=645153