1
0
Fork 0
Commit graph

10 commits

Author SHA1 Message Date
Robert Bragg
94e60c393b [test-cogl-multitexture] Print an error if textures can't be loaded
I just wasted a silly amount time trying to bisect an apparently broken
cogl-test-multitexture until I realized it was just silently failing to load
any textures.
2009-09-16 17:20:03 +01:00
Neil Roberts
3ee093e356 Merge branch 'timeline-no-fps' into 1.0-integration 2009-06-05 12:20:41 +01:00
Neil Roberts
54d8aadf1d [cogl] Move the texture filters to be a property of the material layer
The texture filters are now a property of the material layer rather
than the texture object. Whenever a texture is painted with a material
it sets the filters on all of the GL textures in the Cogl texture. The
filter is cached so that it won't be changed unnecessarily.

The automatic mipmap generation has changed so that the mipmaps are
only generated when the texture is painted instead of every time the
data changes. Changing the texture sets a flag to mark that the
mipmaps are dirty. This works better if the FBO extension is available
because we can use glGenerateMipmap. If the extension is not available
it will temporarily enable automatic mipmap generation and reupload
the first pixel of each slice. This requires tracking the data for the
first pixel.

The COGL_TEXTURE_AUTO_MIPMAP flag has been replaced with
COGL_TEXTURE_NO_AUTO_MIPMAP so that it will default to
auto-mipmapping. The mipmap generation is now effectively free if you
are not using a mipmap filter mode so you would only want to disable
it if you had some special reason to generate your own mipmaps.

ClutterTexture no longer has to store its own copy of the filter
mode. Instead it stores it in the material and the property is
directly set and read from that. This fixes problems with the filters
getting out of sync when a cogl handle is set on the texture
directly. It also avoids the mess of having to rerealize the texture
if the filter quality changes to HIGH because Cogl will take of
generating the mipmaps if needed.
2009-06-04 19:03:40 +01:00
Neil Roberts
9c7afe0c5b [timeline] Remove the concept of frames from timelines
Timelines no longer work in terms of a frame rate and a number of
frames but instead just have a duration in milliseconds. This better
matches the working of the master clock where if any timelines are
running it will redraw as fast as possible rather than limiting to the
lowest rated timeline.

Most applications will just create animations and expect them to
finish in a certain amount of time without caring about how many
frames are drawn. If a frame is going to be drawn it might as well
update all of the animations to some fraction of the total animation
rather than rounding to the nearest whole frame.

The 'frame_num' parameter of the new-frame signal is now 'msecs' which
is a number of milliseconds progressed along the
timeline. Applications should use clutter_timeline_get_progress
instead of the frame number.

Markers can now only be attached at a time value. The position is
stored in milliseconds rather than at a frame number.

test-timeline-smoothness and test-timeline-dup-frames have been
removed because they no longer make sense.
2009-06-04 13:21:57 +01:00
Emmanuele Bassi
c759aeb6a7 Uniformly use floats in Actor properties
All the underlying implementation and the public entry points have
been switched to floats; the only missing bits are the Actor properties
that deal with positioning and sizing.

This usually means a major pain when dealing with GValues and varargs
functions. While GValue will warn you when dealing with the wrong
conversions, varags will simply die an horrible (and hard to debug)
death via segfault. Nothing much to do here, except warn people in the
release notes and hope for the best.
2009-06-01 14:57:18 +01:00
Emmanuele Bassi
71498a6376 [cogl] Remove max_waste argument from Texture ctors
The CoglTexture constructors expose the "max-waste" argument for
controlling the maximum amount of wasted areas for slicing or,
if set to -1, disables slicing.

Slicing is really relevant only for large images that are never
repeated, so it's a useful feature only in controlled use cases.
Specifying the amount of wasted area is, on the other hand, just
a way to mess up this feature; 99% the times, you either pull this
number out of thin air, hoping it's right, or you try to do the
right thing and you choose the wrong number anyway.

Instead, we can use the CoglTextureFlags to control whether the
texture should not be sliced (useful for Clutter-GST and for the
texture-from-pixmap actors) and provide a reasonable value for
enabling the slicing ourself. At some point, we might even
provide a way to change the default at compile time or at run time,
for particular platforms.

Since max_waste is gone, the :tile-waste property of ClutterTexture
becomes read-only, and it proxies the cogl_texture_get_max_waste()
function.

Inside Clutter, the only cases where the max_waste argument was
not set to -1 are in the Pango glyph cache (which is a POT texture
anyway) and inside the test cases where we want to force slicing;
for the latter we can create larger textures that will be bigger than
the threshold we set.

Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
Signed-off-by: Robert Bragg <robert@linux.intel.com>
Signed-off-by: Neil Roberts <neil@linux.intel.com>
2009-05-23 19:35:19 +01:00
Robert Bragg
c3d9f0bed4 [cogl-handle] Optimize how we define cogl handles
The cogl_is_* functions were showing up quite high on profiles due to
iterating through arrays of cogl handles.

This does away with all the handle arrays and implements a simple struct
inheritance scheme. All cogl objects now add a CoglHandleObject _parent;
member to their main structures. The base object includes 2 members a.t.m; a
ref_count, and a klass pointer. The klass in turn gives you a type and
virtual function for freeing objects of that type.

Each handle type has a _cogl_##handle_type##_get_type () function
automatically defined which returns a GQuark of the handle type, so now
implementing the cogl_is_* funcs is just a case of comparing with
obj->klass->type.

Another outcome of the re-work is that cogl_handle_{ref,unref} are also much
more efficient, and no longer need extending for each handle type added to
cogl. The cogl_##handle_type##_{ref,unref} functions are now deprecated and
are no longer used internally to Clutter or Cogl. Potentially we can remove
them completely before 1.0.
2009-04-02 11:58:43 +01:00
Emmanuele Bassi
6bee140e74 [tests] Use floats, not ClutterFixed
The COGL API expects floats, not ClutterFixed, so we need
to use the right type when calling it.
2009-03-10 12:38:04 +00:00
Emmanuele Bassi
a688b1db01 Fallout from cogl-material merge
When enabling the maintainer CFLAGS the compiler got very angry
at the code that has been merged.
2009-01-27 16:02:04 +00:00
Robert Bragg
5985eef44c Fully integrates CoglMaterial throughout the rest of Cogl
This glues CoglMaterial in as the fundamental way that Cogl describes how to
fill in geometry.

It adds cogl_set_source (), which is used to set the material which will be
used by all subsequent drawing functions

It adds cogl_set_source_texture as a convenience for setting up a default
material with a single texture layer, and cogl_set_source_color is now also
a convenience for setting up a material with a solid fill.

"drawing functions" include, cogl_rectangle, cogl_texture_rectangle,
cogl_texture_multiple_rectangles, cogl_texture_polygon (though the
cogl_texture_* funcs have been renamed; see below for details),
cogl_path_fill/stroke and cogl_vertex_buffer_draw*.

cogl_texture_rectangle, cogl_texture_multiple_rectangles and
cogl_texture_polygon no longer take a texture handle; instead the current
source material is referenced. The functions have also been renamed to:
cogl_rectangle_with_texture_coords, cogl_rectangles_with_texture_coords
and cogl_polygon respectivly.

Most code that previously did:
  cogl_texture_rectangle (tex_handle, x, y,...);
needs to be changed to now do:
  cogl_set_source_texture (tex_handle);
  cogl_rectangle_with_texture_coords (x, y,....);

In the less likely case where you were blending your source texture with a color
like:
  cogl_set_source_color4ub (r,g,b,a); /* where r,g,b,a isn't just white */
  cogl_texture_rectangle (tex_handle, x, y,...);
you will need your own material to do that:
  mat = cogl_material_new ();
  cogl_material_set_color4ub (r,g,b,a);
  cogl_material_set_layer (mat, 0, tex_handle));
  cogl_set_source_material (mat);

Code that uses the texture coordinates, 0, 0, 1, 1 don't need to use
cog_rectangle_with_texure_coords since these are the coordinates that
cogl_rectangle will use.

For cogl_texture_polygon; as well as dropping the texture handle, the
n_vertices and vertices arguments were transposed for consistency. So
code previously written as:
  cogl_texture_polygon (tex_handle, 3, verts, TRUE);
need to be written as:
  cogl_set_source_texture (tex_handle);
  cogl_polygon (verts, 3, TRUE);

All of the unit tests have been updated to now use the material API and
test-cogl-material has been renamed to test-cogl-multitexture since any
textured quad is now technically a test of CoglMaterial but this test
specifically creates a material with multiple texture layers.

Note: The GLES backend has not been updated yet; that will be done in a
following commit.
2009-01-27 14:26:39 +00:00
Renamed from tests/interactive/test-cogl-material.c (Browse further)