1
0
Fork 0
mutter-performance-source/cogl/cogl-texture-private.h
Robert Bragg 0bce7eac53 Intial Re-layout of the Cogl source code and introduction of a Cogl Winsys
As part of an incremental process to have Cogl be a standalone project we
want to re-consider how we organise the Cogl source code.

Currently this is the structure I'm aiming for:
cogl/
    cogl/
	<put common source here>
	winsys/
	   cogl-glx.c
	   cogl-wgl.c
	driver/
	    gl/
	    gles/
	os/ ?
    utils/
	cogl-fixed
	cogl-matrix-stack?
        cogl-journal?
        cogl-primitives?
    pango/

The new winsys component is a starting point for migrating window system
code (i.e.  x11,glx,wgl,osx,egl etc) from Clutter to Cogl.

The utils/ and pango/ directories aren't added by this commit, but they are
noted because I plan to add them soon.

Overview of the planned structure:

* The winsys/ API is the API that binds OpenGL to a specific window system,
  be that X11 or win32 etc.  Example are glx, wgl and egl. Much of the logic
  under clutter/{glx,osx,win32 etc} should migrate here.

* Note there is also the idea of a winsys-base that may represent a window
  system for which there are multiple winsys APIs.  An example of this is
  x11, since glx and egl may both be used with x11.  (currently only Clutter
  has the idea of a winsys-base)

* The driver/ represents a specific varient of OpenGL. Currently we have "gl"
  representing OpenGL 1.4-2.1 (mostly fixed function) and "gles" representing
  GLES 1.1 (fixed funciton) and 2.0 (fully shader based)

* Everything under cogl/ should fundamentally be supporting access to the
  GPU.  Essentially Cogl's most basic requirement is to provide a nice GPU
  Graphics API and drawing a line between this and the utility functionality
  we add to support Clutter should help keep this lean and maintainable.

* Code under utils/ as suggested builds on cogl/ adding more convenient
  APIs or mechanism to optimize special cases. Broadly speaking you can
  compare cogl/ to OpenGL and utils/ to GLU.

* clutter/pango will be moved to clutter/cogl/pango

How some of the internal configure.ac/pkg-config terminology has changed:
backendextra -> CLUTTER_WINSYS_BASE # e.g. "x11"
backendextralib -> CLUTTER_WINSYS_BASE_LIB # e.g. "x11/libclutter-x11.la"
clutterbackend -> {CLUTTER,COGL}_WINSYS # e.g. "glx"
CLUTTER_FLAVOUR -> {CLUTTER,COGL}_WINSYS
clutterbackendlib -> CLUTTER_WINSYS_LIB
CLUTTER_COGL -> COGL_DRIVER # e.g. "gl"

Note: The CLUTTER_FLAVOUR and CLUTTER_COGL defines are kept for apps

As the first thing to take advantage of the new winsys component in Cogl;
cogl_get_proc_address() has been moved from cogl/{gl,gles}/cogl.c into
cogl/common/cogl.c and this common implementation first trys
_cogl_winsys_get_proc_address() but if that fails then it falls back to
gmodule.
2009-10-16 18:58:50 +01:00

151 lines
4.5 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifndef __COGL_TEXTURE_PRIVATE_H
#define __COGL_TEXTURE_PRIVATE_H
#include "cogl-bitmap-private.h"
#include "cogl-handle.h"
#include "cogl-material-private.h"
typedef struct _CoglTexture CoglTexture;
typedef struct _CoglTexSliceSpan CoglTexSliceSpan;
typedef struct _CoglSpanIter CoglSpanIter;
typedef struct _CoglTexturePixel CoglTexturePixel;
struct _CoglTexSliceSpan
{
gint start;
gint size;
gint waste;
};
struct _CoglSpanIter
{
gint index;
GArray *array;
CoglTexSliceSpan *span;
float pos;
float next_pos;
float origin;
float cover_start;
float cover_end;
float intersect_start;
float intersect_end;
float intersect_start_local;
float intersect_end_local;
gboolean intersects;
};
/* This is used to store the first pixel of each slice. This is only
used when glGenerateMipmap is not available */
struct _CoglTexturePixel
{
/* We need to store the format of the pixel because we store the
data in the source format which might end up being different for
each slice if a subregion is updated with a different format */
GLenum gl_format;
GLenum gl_type;
guint8 data[4];
};
struct _CoglTexture
{
CoglHandleObject _parent;
CoglBitmap bitmap;
gboolean bitmap_owner;
GLenum gl_target;
GLenum gl_intformat;
GLenum gl_format;
GLenum gl_type;
GArray *slice_x_spans;
GArray *slice_y_spans;
GArray *slice_gl_handles;
gint max_waste;
GLenum min_filter;
GLenum mag_filter;
gboolean is_foreign;
GLint wrap_mode;
gboolean auto_mipmap;
gboolean mipmaps_dirty;
/* This holds a copy of the first pixel in each slice. It is only
used to force an automatic update of the mipmaps when
glGenerateMipmap is not available. */
CoglTexturePixel *first_pixels;
};
/* To improve batching of geometry when submitting vertices to OpenGL we
* log the texture rectangles we want to draw to a journal, so when we
* later flush the journal we aim to batch data, and gl draw calls. */
typedef struct _CoglJournalEntry
{
CoglHandle material;
int n_layers;
CoglMaterialFlushOptions flush_options;
CoglMatrix model_view;
/* XXX: These entries are pretty big now considering the padding in
* CoglMaterialFlushOptions and CoglMatrix, so we might need to optimize this
* later. */
} CoglJournalEntry;
CoglTexture*
_cogl_texture_pointer_from_handle (CoglHandle handle);
void
_cogl_texture_set_wrap_mode_parameter (CoglTexture *tex,
GLenum wrap_mode);
void
_cogl_texture_set_filters (CoglHandle handle,
GLenum min_filter,
GLenum mag_filter);
void
_cogl_texture_ensure_mipmaps (CoglHandle handle);
gboolean
_cogl_texture_span_has_waste (CoglTexture *tex,
gint x_span_index,
gint y_span_index);
void
_cogl_span_iter_begin (CoglSpanIter *iter,
GArray *array,
float origin,
float cover_start,
float cover_end);
gboolean
_cogl_span_iter_end (CoglSpanIter *iter);
void
_cogl_span_iter_next (CoglSpanIter *iter);
void
_cogl_texture_prep_gl_alignment_for_pixels_upload (int pixels_rowstride);
void
_cogl_texture_prep_gl_alignment_for_pixels_download (int pixels_rowstride);
#endif /* __COGL_TEXTURE_PRIVATE_H */