1
0
Fork 0
mutter-performance-source/cogl/cogl-matrix-stack.c
Robert Bragg e3d6bc36d3 Re-design the matrix stack using a graph of ops
This re-designs the matrix stack so we now keep track of each separate
operation such as rotating, scaling, translating and multiplying as
immutable, ref-counted nodes in a graph.

Being a "graph" here means that different transformations composed of
a sequence of linked operation nodes may share nodes.

The first node in a matrix-stack is always a LOAD_IDENTITY operation.

As an example consider if an application where to draw three rectangles
A, B and C something like this:

cogl_framebuffer_scale (fb, 2, 2, 2);
cogl_framebuffer_push_matrix(fb);

  cogl_framebuffer_translate (fb, 10, 0, 0);

  cogl_framebuffer_push_matrix(fb);

    cogl_framebuffer_rotate (fb, 45, 0, 0, 1);
    cogl_framebuffer_draw_rectangle (...); /* A */

  cogl_framebuffer_pop_matrix(fb);

  cogl_framebuffer_draw_rectangle (...); /* B */

cogl_framebuffer_pop_matrix(fb);

cogl_framebuffer_push_matrix(fb);
  cogl_framebuffer_set_modelview_matrix (fb, &mv);
  cogl_framebuffer_draw_rectangle (...); /* C */
cogl_framebuffer_pop_matrix(fb);

That would result in a graph of nodes like this:

LOAD_IDENTITY
      |
    SCALE
    /     \
SAVE       LOAD
  |           |
TRANSLATE    RECTANGLE(C)
  |     \
SAVE    RECTANGLE(B)
  |
ROTATE
  |
RECTANGLE(A)

Each push adds a SAVE operation which serves as a marker to rewind too
when a corresponding pop is issued and also each SAVE node may also
store a cached matrix representing the composition of all its ancestor
nodes. This means if we repeatedly need to resolve a real CoglMatrix
for a given node then we don't need to repeat the composition.

Some advantages of this design are:
- A single pointer to any node in the graph can now represent a
  complete, immutable transformation that can be logged for example
  into a journal. Previously we were storing a full CoglMatrix in
  each journal entry which is 16 floats for the matrix itself as well
  as space for flags and another 16 floats for possibly storing a
  cache of the inverse. This means that we significantly reduce
  the size of the journal when drawing lots of primitives and we also
  avoid copying over 128 bytes per entry.
- It becomes much cheaper to check for equality. In cases where some
  (unlikely) false negatives are allowed simply comparing the pointers
  of two matrix stack graph entries is enough. Previously we would use
  memcmp() to compare matrices.
- It becomes easier to do comparisons of transformations. By looking
  for the common ancestry between nodes we can determine the operations
  that differentiate the transforms and use those to gain a high level
  understanding of the differences. For example we use this in the
  journal to be able to efficiently determine when two rectangle
  transforms only differ by some translation so that we can perform
  software clipping.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit f75aee93f6b293ca7a7babbd8fcc326ee6bf7aef)
2012-08-06 14:27:40 +01:00

1046 lines
30 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2009,2010,2012 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
* Authors:
* Havoc Pennington <hp@pobox.com> for litl
* Robert Bragg <robert@linux.intel.com>
* Neil Roberts <neil@linux.intel.com>
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl-context-private.h"
#include "cogl-internal.h"
#include "cogl-matrix-stack.h"
#include "cogl-framebuffer-private.h"
#include "cogl-object-private.h"
#include "cogl-offscreen.h"
#include "cogl-matrix-private.h"
#include "cogl-magazine-private.h"
static void _cogl_matrix_stack_free (CoglMatrixStack *stack);
COGL_OBJECT_INTERNAL_DEFINE (MatrixStack, matrix_stack);
static CoglMagazine *_cogl_matrix_stack_magazine;
static CoglMagazine *_cogl_matrix_stack_matrices_magazine;
static void *
_cogl_matrix_stack_push_entry (CoglMatrixStack *stack,
size_t size,
CoglMatrixOp operation)
{
CoglMatrixEntry *entry =
_cogl_magazine_chunk_alloc (_cogl_matrix_stack_magazine);
/* The new entry starts with a ref count of 1 because the stack
holds a reference to it as it is the top entry */
entry->ref_count = 1;
entry->op = operation;
entry->parent = stack->last_entry;
entry->composite_gets = 0;
stack->last_entry = entry;
/* We don't need to take a reference to the parent from the entry
because the we are stealing the ref in the new stack top */
return entry;
}
void
_cogl_matrix_entry_identity_init (CoglMatrixEntry *entry)
{
entry->ref_count = 1;
entry->op = COGL_MATRIX_OP_LOAD_IDENTITY;
entry->parent = NULL;
entry->composite_gets = 0;
}
void
_cogl_matrix_stack_load_identity (CoglMatrixStack *stack)
{
_cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntry),
COGL_MATRIX_OP_LOAD_IDENTITY);
}
void
_cogl_matrix_stack_translate (CoglMatrixStack *stack,
float x,
float y,
float z)
{
CoglMatrixEntryTranslate *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryTranslate),
COGL_MATRIX_OP_TRANSLATE);
entry->x = x;
entry->y = y;
entry->z = z;
}
void
_cogl_matrix_stack_rotate (CoglMatrixStack *stack,
float angle,
float x,
float y,
float z)
{
CoglMatrixEntryRotate *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryRotate),
COGL_MATRIX_OP_ROTATE);
entry->angle = angle;
entry->x = x;
entry->y = y;
entry->z = z;
}
void
_cogl_matrix_stack_scale (CoglMatrixStack *stack,
float x,
float y,
float z)
{
CoglMatrixEntryScale *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryScale),
COGL_MATRIX_OP_SCALE);
entry->x = x;
entry->y = y;
entry->z = z;
}
void
_cogl_matrix_stack_multiply (CoglMatrixStack *stack,
const CoglMatrix *matrix)
{
CoglMatrixEntryMultiply *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryMultiply),
COGL_MATRIX_OP_MULTIPLY);
entry->matrix =
_cogl_magazine_chunk_alloc (_cogl_matrix_stack_matrices_magazine);
cogl_matrix_init_from_array (entry->matrix, (float *)matrix);
}
void
_cogl_matrix_stack_set (CoglMatrixStack *stack,
const CoglMatrix *matrix)
{
CoglMatrixEntryLoad *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryLoad),
COGL_MATRIX_OP_LOAD);
entry->matrix =
_cogl_magazine_chunk_alloc (_cogl_matrix_stack_matrices_magazine);
cogl_matrix_init_from_array (entry->matrix, (float *)matrix);
}
void
_cogl_matrix_stack_frustum (CoglMatrixStack *stack,
float left,
float right,
float bottom,
float top,
float z_near,
float z_far)
{
CoglMatrixEntryLoad *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryLoad),
COGL_MATRIX_OP_LOAD);
entry->matrix =
_cogl_magazine_chunk_alloc (_cogl_matrix_stack_matrices_magazine);
cogl_matrix_init_identity (entry->matrix);
cogl_matrix_frustum (entry->matrix,
left, right, bottom, top,
z_near, z_far);
}
void
_cogl_matrix_stack_perspective (CoglMatrixStack *stack,
float fov_y,
float aspect,
float z_near,
float z_far)
{
CoglMatrixEntryLoad *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryLoad),
COGL_MATRIX_OP_LOAD);
entry->matrix =
_cogl_magazine_chunk_alloc (_cogl_matrix_stack_matrices_magazine);
cogl_matrix_init_identity (entry->matrix);
cogl_matrix_perspective (entry->matrix,
fov_y, aspect, z_near, z_far);
}
void
_cogl_matrix_stack_orthographic (CoglMatrixStack *stack,
float x_1,
float y_1,
float x_2,
float y_2,
float near,
float far)
{
CoglMatrixEntryLoad *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntryLoad),
COGL_MATRIX_OP_LOAD);
entry->matrix =
_cogl_magazine_chunk_alloc (_cogl_matrix_stack_matrices_magazine);
cogl_matrix_init_identity (entry->matrix);
cogl_matrix_orthographic (entry->matrix,
x_1, y_1, x_2, y_2, near, far);
}
void
_cogl_matrix_stack_push (CoglMatrixStack *stack)
{
CoglMatrixEntrySave *entry;
entry = _cogl_matrix_stack_push_entry (stack,
sizeof (CoglMatrixEntrySave),
COGL_MATRIX_OP_SAVE);
entry->cache_valid = FALSE;
}
CoglMatrixEntry *
_cogl_matrix_entry_ref (CoglMatrixEntry *entry)
{
/* A NULL pointer is considered a valid stack so we should accept
that as an argument */
if (entry)
entry->ref_count++;
return entry;
}
void
_cogl_matrix_entry_unref (CoglMatrixEntry *entry)
{
for (; entry && --entry->ref_count <= 0; entry = entry->parent)
{
switch (entry->op)
{
case COGL_MATRIX_OP_LOAD_IDENTITY:
case COGL_MATRIX_OP_TRANSLATE:
case COGL_MATRIX_OP_ROTATE:
case COGL_MATRIX_OP_SCALE:
break;
case COGL_MATRIX_OP_MULTIPLY:
{
CoglMatrixEntryMultiply *multiply =
(CoglMatrixEntryMultiply *)entry;
_cogl_magazine_chunk_free (_cogl_matrix_stack_matrices_magazine,
multiply->matrix);
break;
}
case COGL_MATRIX_OP_LOAD:
{
CoglMatrixEntryLoad *load = (CoglMatrixEntryLoad *)entry;
_cogl_magazine_chunk_free (_cogl_matrix_stack_matrices_magazine,
load->matrix);
break;
}
case COGL_MATRIX_OP_SAVE:
{
CoglMatrixEntrySave *save = (CoglMatrixEntrySave *)entry;
if (save->cache_valid)
_cogl_magazine_chunk_free (_cogl_matrix_stack_matrices_magazine,
save->cache);
break;
}
}
_cogl_magazine_chunk_free (_cogl_matrix_stack_magazine, entry);
}
}
void
_cogl_matrix_stack_pop (CoglMatrixStack *stack)
{
CoglMatrixEntry *old_top;
CoglMatrixEntry *new_top;
_COGL_RETURN_IF_FAIL (stack != NULL);
old_top = stack->last_entry;
_COGL_RETURN_IF_FAIL (old_top != NULL);
/* To pop we are moving the top of the stack to the old top's parent
* node. The stack always needs to have a reference to the top entry
* so we must take a reference to the new top. The stack would have
* previously had a reference to the old top so we need to decrease
* the ref count on that. We need to ref the new head first in case
* this stack was the only thing referencing the old top. In that
* case the call to _cogl_matrix_entry_unref will unref the parent.
*/
/* Find the last save operation and remove it */
/* XXX: it would be an error to pop to the very beginning of the
* stack so we don't need to check for NULL pointer dereferencing. */
for (new_top = old_top;
new_top->op != COGL_MATRIX_OP_SAVE;
new_top = new_top->parent)
;
new_top = new_top->parent;
_cogl_matrix_entry_ref (new_top);
_cogl_matrix_entry_unref (old_top);
stack->last_entry = new_top;
}
CoglBool
_cogl_matrix_stack_get_inverse (CoglMatrixStack *stack,
CoglMatrix *inverse)
{
CoglMatrix matrix;
CoglMatrix *internal = _cogl_matrix_stack_get (stack, &matrix);
if (internal)
return cogl_matrix_get_inverse (internal, inverse);
else
return cogl_matrix_get_inverse (&matrix, inverse);
}
/* In addition to writing the stack matrix into the give @matrix
* argument this function *may* sometimes also return a pointer
* to a matrix too so if we are querying the inverse matrix we
* should query from the return matrix so that the result can
* be cached within the stack. */
CoglMatrix *
_cogl_matrix_entry_get (CoglMatrixEntry *entry,
CoglMatrix *matrix)
{
int depth;
CoglMatrixEntry *current;
CoglMatrixEntry **children;
int i;
for (depth = 0, current = entry;
current;
current = current->parent, depth++)
{
switch (current->op)
{
case COGL_MATRIX_OP_LOAD_IDENTITY:
cogl_matrix_init_identity (matrix);
goto initialized;
case COGL_MATRIX_OP_LOAD:
{
CoglMatrixEntryLoad *load = (CoglMatrixEntryLoad *)current;
_cogl_matrix_init_from_matrix_without_inverse (matrix,
load->matrix);
goto initialized;
}
case COGL_MATRIX_OP_SAVE:
{
CoglMatrixEntrySave *save = (CoglMatrixEntrySave *)current;
if (!save->cache_valid)
{
CoglMagazine *matrices_magazine =
_cogl_matrix_stack_matrices_magazine;
save->cache = _cogl_magazine_chunk_alloc (matrices_magazine);
_cogl_matrix_entry_get (current->parent, save->cache);
save->cache_valid = TRUE;
}
_cogl_matrix_init_from_matrix_without_inverse (matrix, save->cache);
goto initialized;
}
default:
continue;
}
}
initialized:
if (depth == 0)
{
switch (entry->op)
{
case COGL_MATRIX_OP_LOAD_IDENTITY:
case COGL_MATRIX_OP_TRANSLATE:
case COGL_MATRIX_OP_ROTATE:
case COGL_MATRIX_OP_SCALE:
case COGL_MATRIX_OP_MULTIPLY:
return NULL;
case COGL_MATRIX_OP_LOAD:
{
CoglMatrixEntryLoad *load = (CoglMatrixEntryLoad *)entry;
return load->matrix;
}
case COGL_MATRIX_OP_SAVE:
{
CoglMatrixEntrySave *save = (CoglMatrixEntrySave *)entry;
return save->cache;
}
}
g_warn_if_reached ();
return NULL;
}
#ifdef COGL_ENABLE_DEBUG
if (!current)
{
g_warning ("Inconsistent matrix stack");
return NULL;
}
#endif
entry->composite_gets++;
children = g_alloca (sizeof (CoglMatrixEntry) * depth);
/* We need walk the list of entries from the init/load/save entry
* back towards the leaf node but the nodes don't link to their
* children so we need to re-walk them here to add to a separate
* array. */
for (i = depth - 1, current = entry;
i >= 0 && current;
i--, current = current->parent)
{
children[i] = current;
}
if (COGL_DEBUG_ENABLED (COGL_DEBUG_PERFORMANCE) &&
entry->composite_gets >= 2)
{
COGL_NOTE (PERFORMANCE,
"Re-composing a matrix stack entry multiple times");
}
for (i = 0; i < depth; i++)
{
switch (children[i]->op)
{
case COGL_MATRIX_OP_TRANSLATE:
{
CoglMatrixEntryTranslate *translate =
(CoglMatrixEntryTranslate *)children[i];
cogl_matrix_translate (matrix,
translate->x,
translate->y,
translate->z);
continue;
}
case COGL_MATRIX_OP_ROTATE:
{
CoglMatrixEntryRotate *rotate=
(CoglMatrixEntryRotate *)children[i];
cogl_matrix_rotate (matrix,
rotate->angle,
rotate->x,
rotate->y,
rotate->z);
continue;
}
case COGL_MATRIX_OP_SCALE:
{
CoglMatrixEntryScale *scale =
(CoglMatrixEntryScale *)children[i];
cogl_matrix_scale (matrix,
scale->x,
scale->y,
scale->z);
continue;
}
case COGL_MATRIX_OP_MULTIPLY:
{
CoglMatrixEntryMultiply *multiply =
(CoglMatrixEntryMultiply *)children[i];
cogl_matrix_multiply (matrix, matrix, multiply->matrix);
continue;
}
case COGL_MATRIX_OP_LOAD_IDENTITY:
case COGL_MATRIX_OP_LOAD:
case COGL_MATRIX_OP_SAVE:
g_warn_if_reached ();
continue;
}
}
return NULL;
}
/* In addition to writing the stack matrix into the give @matrix
* argument this function *may* sometimes also return a pointer
* to a matrix too so if we are querying the inverse matrix we
* should query from the return matrix so that the result can
* be cached within the stack. */
CoglMatrix *
_cogl_matrix_stack_get (CoglMatrixStack *stack,
CoglMatrix *matrix)
{
return _cogl_matrix_entry_get (stack->last_entry, matrix);
}
static void
_cogl_matrix_stack_free (CoglMatrixStack *stack)
{
_cogl_matrix_entry_unref (stack->last_entry);
g_slice_free (CoglMatrixStack, stack);
}
CoglMatrixStack *
_cogl_matrix_stack_new (void)
{
CoglMatrixStack *stack = g_slice_new (CoglMatrixStack);
if (G_UNLIKELY (_cogl_matrix_stack_magazine == NULL))
{
_cogl_matrix_stack_magazine =
_cogl_magazine_new (sizeof (CoglMatrixEntryFull), 20);
_cogl_matrix_stack_matrices_magazine =
_cogl_magazine_new (sizeof (CoglMatrix), 20);
}
stack->last_entry = NULL;
_cogl_matrix_stack_load_identity (stack);
return _cogl_matrix_stack_object_new (stack);
}
static CoglMatrixEntry *
_cogl_matrix_entry_skip_saves (CoglMatrixEntry *entry)
{
/* We currently assume that every stack starts with an
* _OP_LOAD_IDENTITY so we don't need to worry about
* NULL pointer dereferencing here. */
while (entry->op == COGL_MATRIX_OP_SAVE)
entry = entry->parent;
return entry;
}
CoglBool
_cogl_matrix_entry_calculate_translation (CoglMatrixEntry *entry0,
CoglMatrixEntry *entry1,
float *x,
float *y,
float *z)
{
GSList *head0 = NULL;
GSList *head1 = NULL;
CoglMatrixEntry *node0;
CoglMatrixEntry *node1;
int len0 = 0;
int len1 = 0;
int count;
GSList *common_ancestor0;
GSList *common_ancestor1;
/* Algorithm:
*
* 1) Ignoring _OP_SAVE entries walk the ancestors of each entry to
* the root node or any non-translation node, adding a pointer to
* each ancestor node to two linked lists.
*
* 2) Compare the lists to find the nodes where they start to
* differ marking the common_ancestor node for each list.
*
* 3) For the list corresponding to entry0, start iterating after
* the common ancestor applying the negative of all translations
* to x, y and z.
*
* 4) For the list corresponding to entry1, start iterating after
* the common ancestor applying the positive of all translations
* to x, y and z.
*
* If we come across any non-translation operations during 3) or 4)
* then bail out returning FALSE.
*/
for (node0 = entry0; node0; node0 = node0->parent)
{
GSList *link;
if (node0->op == COGL_MATRIX_OP_SAVE)
continue;
link = alloca (sizeof (GSList));
link->next = head0;
link->data = node0;
head0 = link;
len0++;
if (node0->op != COGL_MATRIX_OP_TRANSLATE)
break;
}
for (node1 = entry1; node1; node1 = node1->parent)
{
GSList *link;
if (node1->op == COGL_MATRIX_OP_SAVE)
continue;
link = alloca (sizeof (GSList));
link->next = head1;
link->data = node1;
head1 = link;
len1++;
if (node1->op != COGL_MATRIX_OP_TRANSLATE)
break;
}
if (head0->data != head1->data)
return FALSE;
common_ancestor0 = head0;
common_ancestor1 = head1;
head0 = head0->next;
head1 = head1->next;
count = MIN (len0, len1) - 1;
while (count--)
{
if (head0->data != head1->data)
break;
common_ancestor0 = head0;
common_ancestor1 = head1;
head0 = head0->next;
head1 = head1->next;
}
*x = 0;
*y = 0;
*z = 0;
for (head0 = common_ancestor0->next; head0; head0 = head0->next)
{
CoglMatrixEntryTranslate *translate;
node0 = head0->data;
if (node0->op != COGL_MATRIX_OP_TRANSLATE)
return FALSE;
translate = (CoglMatrixEntryTranslate *)node0;
*x = *x - translate->x;
*y = *y - translate->y;
*z = *z - translate->z;
}
for (head1 = common_ancestor1->next; head1; head1 = head1->next)
{
CoglMatrixEntryTranslate *translate;
node1 = head1->data;
if (node1->op != COGL_MATRIX_OP_TRANSLATE)
return FALSE;
translate = (CoglMatrixEntryTranslate *)node1;
*x = *x + translate->x;
*y = *y + translate->y;
*z = *z + translate->z;
}
return TRUE;
}
CoglBool
_cogl_matrix_entry_has_identity_flag (CoglMatrixEntry *entry)
{
return entry ? entry->op == COGL_MATRIX_OP_LOAD_IDENTITY : FALSE;
}
static void
_cogl_matrix_flush_to_gl_builtin (CoglContext *ctx,
CoglBool is_identity,
CoglMatrix *matrix,
CoglMatrixMode mode)
{
g_assert (ctx->driver == COGL_DRIVER_GL ||
ctx->driver == COGL_DRIVER_GLES1);
#if defined (HAVE_COGL_GL) || defined (HAVE_COGL_GLES)
if (ctx->flushed_matrix_mode != mode)
{
GLenum gl_mode = 0;
switch (mode)
{
case COGL_MATRIX_MODELVIEW:
gl_mode = GL_MODELVIEW;
break;
case COGL_MATRIX_PROJECTION:
gl_mode = GL_PROJECTION;
break;
case COGL_MATRIX_TEXTURE:
gl_mode = GL_TEXTURE;
break;
}
GE (ctx, glMatrixMode (gl_mode));
ctx->flushed_matrix_mode = mode;
}
if (is_identity)
GE (ctx, glLoadIdentity ());
else
GE (ctx, glLoadMatrixf (cogl_matrix_get_array (matrix)));
#endif
}
void
_cogl_matrix_entry_flush_to_gl_builtins (CoglContext *ctx,
CoglMatrixEntry *entry,
CoglMatrixMode mode,
CoglFramebuffer *framebuffer,
CoglBool disable_flip)
{
g_assert (ctx->driver == COGL_DRIVER_GL ||
ctx->driver == COGL_DRIVER_GLES1);
#if defined (HAVE_COGL_GL) || defined (HAVE_COGL_GLES)
{
CoglBool needs_flip;
CoglMatrixEntryCache *cache;
if (mode == COGL_MATRIX_PROJECTION)
{
/* Because Cogl defines texture coordinates to have a top left
* origin and because offscreen framebuffers may be used for
* rendering to textures we always render upside down to
* offscreen buffers. Also for some backends we need to render
* onscreen buffers upside-down too.
*/
if (disable_flip)
needs_flip = FALSE;
else
needs_flip = cogl_is_offscreen (framebuffer);
cache = &ctx->builtin_flushed_projection;
}
else
{
needs_flip = FALSE;
if (mode == COGL_MATRIX_MODELVIEW)
cache = &ctx->builtin_flushed_modelview;
else
cache = NULL;
}
/* We don't need to do anything if the state is the same */
if (!cache ||
_cogl_matrix_entry_cache_maybe_update (cache, entry, needs_flip))
{
CoglBool is_identity;
CoglMatrix matrix;
if (entry->op == COGL_MATRIX_OP_LOAD_IDENTITY)
is_identity = TRUE;
else
{
is_identity = FALSE;
_cogl_matrix_entry_get (entry, &matrix);
}
if (needs_flip)
{
CoglMatrix flipped_matrix;
cogl_matrix_multiply (&flipped_matrix,
&ctx->y_flip_matrix,
is_identity ?
&ctx->identity_matrix :
&matrix);
_cogl_matrix_flush_to_gl_builtin (ctx,
/* not identity */
FALSE,
&flipped_matrix,
mode);
}
else
{
_cogl_matrix_flush_to_gl_builtin (ctx,
is_identity,
&matrix,
mode);
}
}
}
#endif
}
CoglBool
_cogl_matrix_entry_fast_equal (CoglMatrixEntry *entry0,
CoglMatrixEntry *entry1)
{
return entry0 == entry1;
}
CoglBool
_cogl_matrix_entry_equal (CoglMatrixEntry *entry0,
CoglMatrixEntry *entry1)
{
for (;
entry0 && entry1;
entry0 = entry0->parent, entry1 = entry1->parent)
{
entry0 = _cogl_matrix_entry_skip_saves (entry0);
entry1 = _cogl_matrix_entry_skip_saves (entry1);
if (entry0 == entry1)
return TRUE;
if (entry0->op != entry1->op)
return FALSE;
switch (entry0->op)
{
case COGL_MATRIX_OP_LOAD_IDENTITY:
return TRUE;
case COGL_MATRIX_OP_TRANSLATE:
{
CoglMatrixEntryTranslate *translate0 =
(CoglMatrixEntryTranslate *)entry0;
CoglMatrixEntryTranslate *translate1 =
(CoglMatrixEntryTranslate *)entry1;
/* We could perhaps use an epsilon to compare here?
* I expect the false negatives are probaly never going to
* be a problem and this is a bit cheaper. */
if (translate0->x != translate1->x ||
translate0->y != translate1->y ||
translate0->z != translate1->z)
return FALSE;
}
case COGL_MATRIX_OP_ROTATE:
{
CoglMatrixEntryRotate *rotate0 =
(CoglMatrixEntryRotate *)entry0;
CoglMatrixEntryRotate *rotate1 =
(CoglMatrixEntryRotate *)entry1;
if (rotate0->angle != rotate1->angle ||
rotate0->x != rotate1->x ||
rotate0->y != rotate1->y ||
rotate0->z != rotate1->z)
return FALSE;
}
case COGL_MATRIX_OP_SCALE:
{
CoglMatrixEntryScale *scale0 = (CoglMatrixEntryScale *)entry0;
CoglMatrixEntryScale *scale1 = (CoglMatrixEntryScale *)entry1;
if (scale0->x != scale1->x ||
scale0->y != scale1->y ||
scale0->z != scale1->z)
return FALSE;
}
case COGL_MATRIX_OP_MULTIPLY:
{
CoglMatrixEntryMultiply *mult0 = (CoglMatrixEntryMultiply *)entry0;
CoglMatrixEntryMultiply *mult1 = (CoglMatrixEntryMultiply *)entry1;
if (!cogl_matrix_equal (mult0->matrix, mult1->matrix))
return FALSE;
}
case COGL_MATRIX_OP_LOAD:
{
CoglMatrixEntryLoad *load0 = (CoglMatrixEntryLoad *)entry0;
CoglMatrixEntryLoad *load1 = (CoglMatrixEntryLoad *)entry1;
/* There's no need to check any further since an
* _OP_LOAD makes all the ancestors redundant as far as
* the final matrix value is concerned. */
return cogl_matrix_equal (load0->matrix, load1->matrix);
}
case COGL_MATRIX_OP_SAVE:
/* We skip over saves above so we shouldn't see save entries */
g_warn_if_reached ();
}
}
return FALSE;
}
void
_cogl_matrix_entry_print (CoglMatrixEntry *entry)
{
int depth;
CoglMatrixEntry *e;
CoglMatrixEntry **children;
int i;
for (depth = 0, e = entry; e; e = e->parent)
depth++;
children = g_alloca (sizeof (CoglMatrixEntry) * depth);
for (i = depth - 1, e = entry;
i >= 0 && e;
i--, e = e->parent)
{
children[i] = e;
}
g_print ("MatrixEntry %p =\n", entry);
for (i = 0; i < depth; i++)
{
entry = children[i];
switch (entry->op)
{
case COGL_MATRIX_OP_LOAD_IDENTITY:
g_print (" LOAD IDENTITY\n");
continue;
case COGL_MATRIX_OP_TRANSLATE:
{
CoglMatrixEntryTranslate *translate =
(CoglMatrixEntryTranslate *)entry;
g_print (" TRANSLATE X=%f Y=%f Z=%f\n",
translate->x,
translate->y,
translate->z);
continue;
}
case COGL_MATRIX_OP_ROTATE:
{
CoglMatrixEntryRotate *rotate =
(CoglMatrixEntryRotate *)entry;
g_print (" ROTATE ANGLE=%f X=%f Y=%f Z=%f\n",
rotate->angle,
rotate->x,
rotate->y,
rotate->z);
continue;
}
case COGL_MATRIX_OP_SCALE:
{
CoglMatrixEntryScale *scale = (CoglMatrixEntryScale *)entry;
g_print (" SCALE X=%f Y=%f Z=%f\n",
scale->x,
scale->y,
scale->z);
continue;
}
case COGL_MATRIX_OP_MULTIPLY:
{
CoglMatrixEntryMultiply *mult = (CoglMatrixEntryMultiply *)entry;
g_print (" MULT:\n");
_cogl_matrix_prefix_print (" ", mult->matrix);
continue;
}
case COGL_MATRIX_OP_LOAD:
{
CoglMatrixEntryLoad *load = (CoglMatrixEntryLoad *)entry;
g_print (" LOAD:\n");
_cogl_matrix_prefix_print (" ", load->matrix);
continue;
}
case COGL_MATRIX_OP_SAVE:
g_print (" SAVE\n");
}
}
}
void
_cogl_matrix_entry_cache_init (CoglMatrixEntryCache *cache)
{
cache->entry = NULL;
cache->flushed_identity = FALSE;
}
/* NB: This function can report false negatives since it never does a
* deep comparison of the stack matrices. */
CoglBool
_cogl_matrix_entry_cache_maybe_update (CoglMatrixEntryCache *cache,
CoglMatrixEntry *entry,
CoglBool flip)
{
CoglBool is_identity;
CoglBool updated = FALSE;
if (cache->flipped != flip)
{
cache->flipped = flip;
updated = TRUE;
}
is_identity = (entry->op == COGL_MATRIX_OP_LOAD_IDENTITY);
if (cache->flushed_identity != is_identity)
{
cache->flushed_identity = is_identity;
updated = TRUE;
}
if (cache->entry != entry)
{
_cogl_matrix_entry_ref (entry);
if (cache->entry)
_cogl_matrix_entry_unref (cache->entry);
cache->entry = entry;
/* We want to make sure here that if the cache->entry and the
* given @entry are both identity matrices then even though they
* are different entries we don't want to consider this an
* update...
*/
updated |= !is_identity;
}
return updated;
}
void
_cogl_matrix_entry_cache_destroy (CoglMatrixEntryCache *cache)
{
if (cache->entry)
_cogl_matrix_entry_unref (cache->entry);
}