1
0
Fork 0
mutter-performance-source/cogl/cogl-material-private.h
Robert Bragg 8f15f63212 material-node: track if node owns reference on parent
MaterialNodes are used for the sparse graph of material state and layer
state. In the case of materials there is the idea of weak materials that
don't take a reference on their parent and in that case we need to be
careful not to unref our parent during
_cogl_material_node_unparent_real. This adds a has_parent_reference
member to the CoglMaterialNode struct so we now know when to skip the
unref.
2010-11-03 17:28:45 +00:00

957 lines
32 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009,2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#ifndef __COGL_MATERIAL_PRIVATE_H
#define __COGL_MATERIAL_PRIVATE_H
#include "cogl.h"
#include "cogl-material.h"
#include "cogl-matrix.h"
#include "cogl-handle.h"
#include "cogl-profile.h"
#include <glib.h>
#if defined (HAVE_COGL_GL)
/* NB: material->backend is currently a 3bit unsigned int bitfield */
#define COGL_MATERIAL_BACKEND_GLSL 0
#define COGL_MATERIAL_BACKEND_GLSL_MASK (1L<<0)
#define COGL_MATERIAL_BACKEND_ARBFP 1
#define COGL_MATERIAL_BACKEND_ARBFP_MASK (1L<<1)
#define COGL_MATERIAL_BACKEND_FIXED 2
#define COGL_MATERIAL_BACKEND_FIXED_MASK (1L<<2)
#define COGL_MATERIAL_N_BACKENDS 3
#elif defined (HAVE_COGL_GLES2)
#define COGL_MATERIAL_BACKEND_GLSL 0
#define COGL_MATERIAL_BACKEND_GLSL_MASK (1L<<0)
#define COGL_MATERIAL_BACKEND_FIXED 1
#define COGL_MATERIAL_BACKEND_FIXED_MASK (1L<<1)
#define COGL_MATERIAL_N_BACKENDS 2
#else /* HAVE_COGL_GLES */
#define COGL_MATERIAL_BACKEND_FIXED 0
#define COGL_MATERIAL_BACKEND_FIXED_MASK (1L<<0)
#define COGL_MATERIAL_N_BACKENDS 1
#endif
#define COGL_MATERIAL_BACKEND_DEFAULT 0
#define COGL_MATERIAL_BACKEND_UNDEFINED 3
typedef enum
{
COGL_MATERIAL_LAYER_STATE_UNIT = 1L<<0,
COGL_MATERIAL_LAYER_STATE_TEXTURE = 1L<<1,
COGL_MATERIAL_LAYER_STATE_FILTERS = 1L<<2,
COGL_MATERIAL_LAYER_STATE_WRAP_MODES = 1L<<3,
COGL_MATERIAL_LAYER_STATE_COMBINE = 1L<<4,
COGL_MATERIAL_LAYER_STATE_COMBINE_CONSTANT = 1L<<5,
COGL_MATERIAL_LAYER_STATE_USER_MATRIX = 1L<<6,
COGL_MATERIAL_LAYER_STATE_POINT_SPRITE_COORDS = 1L<<7,
/* COGL_MATERIAL_LAYER_STATE_TEXTURE_INTERN = 1L<<8, */
COGL_MATERIAL_LAYER_STATE_ALL_SPARSE =
COGL_MATERIAL_LAYER_STATE_UNIT |
COGL_MATERIAL_LAYER_STATE_TEXTURE |
COGL_MATERIAL_LAYER_STATE_FILTERS |
COGL_MATERIAL_LAYER_STATE_WRAP_MODES |
COGL_MATERIAL_LAYER_STATE_COMBINE |
COGL_MATERIAL_LAYER_STATE_COMBINE_CONSTANT |
COGL_MATERIAL_LAYER_STATE_USER_MATRIX |
COGL_MATERIAL_LAYER_STATE_POINT_SPRITE_COORDS,
COGL_MATERIAL_LAYER_STATE_NEEDS_BIG_STATE =
COGL_MATERIAL_LAYER_STATE_COMBINE |
COGL_MATERIAL_LAYER_STATE_COMBINE_CONSTANT |
COGL_MATERIAL_LAYER_STATE_USER_MATRIX |
COGL_MATERIAL_LAYER_STATE_POINT_SPRITE_COORDS,
} CoglMaterialLayerState;
typedef struct
{
/* The texture combine state determines how the color of individual
* texture fragments are calculated. */
GLint texture_combine_rgb_func;
GLint texture_combine_rgb_src[3];
GLint texture_combine_rgb_op[3];
GLint texture_combine_alpha_func;
GLint texture_combine_alpha_src[3];
GLint texture_combine_alpha_op[3];
float texture_combine_constant[4];
/* The texture matrix dscribes how to transform texture coordinates */
CoglMatrix matrix;
gboolean point_sprite_coords;
} CoglMaterialLayerBigState;
/* Materials and layers represent their state in a tree structure where
* some of the state relating to a given material or layer may actually
* be owned by one if is ancestors in the tree. We have a common data
* type to track the tree heirachy so we can share code... */
typedef struct _CoglMaterialNode CoglMaterialNode;
struct _CoglMaterialNode
{
/* the parent in terms of class hierarchy, so anything inheriting
* from CoglMaterialNode also inherits from CoglObject. */
CoglObject _parent;
/* The parent material/layer */
CoglMaterialNode *parent;
/* TRUE if the node took a strong reference on its parent. Weak
* materials for instance don't take a reference on their parent. */
gboolean has_parent_reference;
/* As an optimization for creating leaf node materials/layers (the
* most common) we don't require any list node allocations to link
* to a single descendant. */
CoglMaterialNode *first_child;
/* Determines if node->first_child and node->children are
* initialized pointers. */
gboolean has_children;
/* Materials and layers are sparse structures defined as a diff
* against their parent and may have multiple children which depend
* on them to define the values of properties which they don't
* change. */
GList *children;
};
#define COGL_MATERIAL_NODE(X) ((CoglMaterialNode *)(X))
typedef void (*CoglMaterialNodeUnparentVFunc) (CoglMaterialNode *node);
typedef gboolean (*CoglMaterialNodeChildCallback) (CoglMaterialNode *child,
void *user_data);
void
_cogl_material_node_foreach_child (CoglMaterialNode *node,
CoglMaterialNodeChildCallback callback,
void *user_data);
struct _CoglMaterialLayer
{
/* XXX: Please think twice about adding members that *have* be
* initialized during a _cogl_material_layer_copy. We are aiming
* to have copies be as cheap as possible and copies may be
* done by the primitives APIs which means they may happen
* in performance critical code paths.
*
* XXX: If you are extending the state we track please consider if
* the state is expected to vary frequently across many materials or
* if the state can be shared among many derived materials instead.
* This will determine if the state should be added directly to this
* structure which will increase the memory overhead for *all*
* layers or if instead it can go under ->big_state.
*/
/* Layers represent their state in a tree structure where some of
* the state relating to a given material or layer may actually be
* owned by one if is ancestors in the tree. We have a common data
* type to track the tree heirachy so we can share code... */
CoglMaterialNode _parent;
/* Some layers have a material owner, which is to say that the layer
* is referenced in that materials->layer_differences list. A layer
* doesn't always have an owner and may simply be an ancestor for
* other layers that keeps track of some shared state. */
CoglMaterial *owner;
/* The lowest index is blended first then others on top */
int index;
/* Different material backends (GLSL/ARBfp/Fixed Function) may
* want to associate private data with a layer...
*
* NB: we have per backend pointers because a layer may be
* associated with multiple materials with different backends.
*/
void *backend_priv[COGL_MATERIAL_N_BACKENDS];
/* A mask of which state groups are different in this layer
* in comparison to its parent. */
unsigned long differences;
/* Common differences
*
* As a basic way to reduce memory usage we divide the layer
* state into two groups; the minimal state modified in 90% of
* all layers and the rest, so that the second group can
* be allocated dynamically when required.
*/
/* Each layer is directly associated with a single texture unit */
int unit_index;
/* The texture for this layer, or COGL_INVALID_HANDLE for an empty
* layer */
CoglHandle texture;
gboolean texture_overridden;
/* If ->texture_overridden == TRUE then the texture is instead
* defined by these... */
GLuint slice_gl_texture;
GLenum slice_gl_target;
CoglMaterialFilter mag_filter;
CoglMaterialFilter min_filter;
CoglMaterialWrapMode wrap_mode_s;
CoglMaterialWrapMode wrap_mode_t;
CoglMaterialWrapMode wrap_mode_p;
/* Infrequent differences aren't currently tracked in
* a separate, dynamically allocated structure as they are
* for materials... */
CoglMaterialLayerBigState *big_state;
/* bitfields */
/* Determines if layer->big_state is valid */
unsigned int has_big_state:1;
};
/* Used in material->differences masks and for notifying material
* state changes... */
typedef enum _CoglMaterialState
{
COGL_MATERIAL_STATE_COLOR = 1L<<0,
COGL_MATERIAL_STATE_BLEND_ENABLE = 1L<<1,
COGL_MATERIAL_STATE_LAYERS = 1L<<2,
COGL_MATERIAL_STATE_LIGHTING = 1L<<3,
COGL_MATERIAL_STATE_ALPHA_FUNC = 1L<<4,
COGL_MATERIAL_STATE_BLEND = 1L<<5,
COGL_MATERIAL_STATE_USER_SHADER = 1L<<6,
COGL_MATERIAL_STATE_DEPTH = 1L<<7,
COGL_MATERIAL_STATE_FOG = 1L<<8,
COGL_MATERIAL_STATE_POINT_SIZE = 1L<<9,
COGL_MATERIAL_STATE_REAL_BLEND_ENABLE = 1L<<10,
COGL_MATERIAL_STATE_ALL_SPARSE =
COGL_MATERIAL_STATE_COLOR |
COGL_MATERIAL_STATE_BLEND_ENABLE |
COGL_MATERIAL_STATE_LAYERS |
COGL_MATERIAL_STATE_LIGHTING |
COGL_MATERIAL_STATE_ALPHA_FUNC |
COGL_MATERIAL_STATE_BLEND |
COGL_MATERIAL_STATE_USER_SHADER |
COGL_MATERIAL_STATE_DEPTH |
COGL_MATERIAL_STATE_FOG |
COGL_MATERIAL_STATE_POINT_SIZE,
COGL_MATERIAL_STATE_AFFECTS_BLENDING =
COGL_MATERIAL_STATE_COLOR |
COGL_MATERIAL_STATE_BLEND_ENABLE |
COGL_MATERIAL_STATE_LAYERS |
COGL_MATERIAL_STATE_LIGHTING |
COGL_MATERIAL_STATE_BLEND |
COGL_MATERIAL_STATE_USER_SHADER,
COGL_MATERIAL_STATE_NEEDS_BIG_STATE =
COGL_MATERIAL_STATE_LIGHTING |
COGL_MATERIAL_STATE_ALPHA_FUNC |
COGL_MATERIAL_STATE_BLEND |
COGL_MATERIAL_STATE_USER_SHADER |
COGL_MATERIAL_STATE_DEPTH |
COGL_MATERIAL_STATE_FOG |
COGL_MATERIAL_STATE_POINT_SIZE
} CoglMaterialState;
typedef enum
{
COGL_MATERIAL_LIGHTING_STATE_PROPERTY_AMBIENT = 1,
COGL_MATERIAL_LIGHTING_STATE_PROPERTY_DIFFUSE,
COGL_MATERIAL_LIGHTING_STATE_PROPERTY_SPECULAR,
COGL_MATERIAL_LIGHTING_STATE_PROPERTY_EMISSION,
COGL_MATERIAL_LIGHTING_STATE_PROPERTY_SHININESS
} CoglMaterialLightingStateProperty;
typedef struct
{
/* Standard OpenGL lighting model attributes */
float ambient[4];
float diffuse[4];
float specular[4];
float emission[4];
float shininess;
} CoglMaterialLightingState;
typedef struct
{
/* Determines what fragments are discarded based on their alpha */
CoglMaterialAlphaFunc alpha_func;
GLfloat alpha_func_reference;
} CoglMaterialAlphaFuncState;
typedef enum _CoglMaterialBlendEnable
{
/* XXX: we want to detect users mistakenly using TRUE or FALSE
* so start the enum at 2. */
COGL_MATERIAL_BLEND_ENABLE_ENABLED = 2,
COGL_MATERIAL_BLEND_ENABLE_DISABLED,
COGL_MATERIAL_BLEND_ENABLE_AUTOMATIC
} CoglMaterialBlendEnable;
typedef struct
{
/* Determines how this material is blended with other primitives */
#ifndef HAVE_COGL_GLES
GLenum blend_equation_rgb;
GLenum blend_equation_alpha;
GLint blend_src_factor_alpha;
GLint blend_dst_factor_alpha;
CoglColor blend_constant;
#endif
GLint blend_src_factor_rgb;
GLint blend_dst_factor_rgb;
} CoglMaterialBlendState;
typedef struct
{
gboolean depth_test_enabled;
CoglDepthTestFunction depth_test_function;
gboolean depth_writing_enabled;
float depth_range_near;
float depth_range_far;
} CoglMaterialDepthState;
typedef struct
{
gboolean enabled;
CoglColor color;
CoglFogMode mode;
float density;
float z_near;
float z_far;
} CoglMaterialFogState;
typedef struct
{
CoglMaterialLightingState lighting_state;
CoglMaterialAlphaFuncState alpha_state;
CoglMaterialBlendState blend_state;
CoglHandle user_program;
CoglMaterialDepthState depth_state;
CoglMaterialFogState fog_state;
float point_size;
} CoglMaterialBigState;
typedef enum
{
COGL_MATERIAL_FLAG_DIRTY_LAYERS_CACHE = 1L<<0,
COGL_MATERIAL_FLAG_DIRTY_GET_LAYERS_LIST = 1L<<1
} CoglMaterialFlag;
typedef struct
{
CoglMaterial *owner;
CoglMaterialLayer *layer;
} CoglMaterialLayerCacheEntry;
/*
* CoglMaterialDestroyCallback
* @material: The #CoglMaterial that has been destroyed
* @user_data: The private data associated with the callback
*
* Notifies when a weak material has been destroyed because one
* of its ancestors has been freed or modified.
*/
typedef void (*CoglMaterialDestroyCallback)(CoglMaterial *material,
void *user_data);
struct _CoglMaterial
{
/* XXX: Please think twice about adding members that *have* be
* initialized during a cogl_material_copy. We are aiming to have
* copies be as cheap as possible and copies may be done by the
* primitives APIs which means they may happen in performance
* critical code paths.
*
* XXX: If you are extending the state we track please consider if
* the state is expected to vary frequently across many materials or
* if the state can be shared among many derived materials instead.
* This will determine if the state should be added directly to this
* structure which will increase the memory overhead for *all*
* materials or if instead it can go under ->big_state.
*/
/* Layers represent their state in a tree structure where some of
* the state relating to a given material or layer may actually be
* owned by one if is ancestors in the tree. We have a common data
* type to track the tree heirachy so we can share code... */
CoglMaterialNode _parent;
/* We need to track if a material is referenced in the journal
* because we can't allow modification to these materials without
* flushing the journal first */
unsigned long journal_ref_count;
/* When weak materials are destroyed the user is notified via this
* callback */
CoglMaterialDestroyCallback destroy_callback;
/* When notifying that a weak material has been destroyed this
* private data is passed to the above callback */
void *destroy_data;
/* A mask of which sparse state groups are different in this
* material in comparison to its parent. */
unsigned long differences;
/* The fragment processing backends can associate private data with a
* material. */
void *backend_privs[COGL_MATERIAL_N_BACKENDS];
/* Whenever a material is modified we increment the age. There's no
* guarantee that it won't wrap but it can nevertheless be a
* convenient mechanism to determine when a material has been
* changed to you can invalidate some some associated cache that
* depends on the old state. */
unsigned long age;
/* This is the primary color of the material.
*
* This is a sparse property, ref COGL_MATERIAL_STATE_COLOR */
CoglColor color;
/* A material may be made up with multiple layers used to combine
* textures together.
*
* This is sparse state, ref COGL_MATERIAL_STATE_LAYERS */
GList *layer_differences;
unsigned int n_layers;
/* As a basic way to reduce memory usage we divide the material
* state into two groups; the minimal state modified in 90% of
* all materials and the rest, so that the second group can
* be allocated dynamically when required... */
CoglMaterialBigState *big_state;
/* For debugging purposes it's possible to associate a static const
* string with a material which can be an aid when trying to trace
* where the material originates from */
const char *static_breadcrumb;
/* Cached state... */
/* A cached, complete list of the layers this material depends
* on sorted by layer->unit_index. */
CoglMaterialLayer **layers_cache;
/* To avoid a separate ->layers_cache allocation for common
* materials with only a few layers... */
CoglMaterialLayer *short_layers_cache[3];
/* The deprecated cogl_material_get_layers() API returns a
* const GList of layers, which we track here... */
GList *deprecated_get_layers_list;
/* XXX: consider adding an authorities cache to speed up sparse
* property value lookups:
* CoglMaterial *authorities_cache[COGL_MATERIAL_N_SPARSE_PROPERTIES];
* and corresponding authorities_cache_dirty:1 bitfield
*/
/* bitfields */
/* A material can have private data associated with it for multiple
* fragment processing backends. Although only one backend is
* associated with a material the backends may want to cache private
* state with the ancestors of other materials and those ancestors
* could currently be associated with different backends.
*
* Each set bit indicates if the correspondong ->backend_privs[]
* entry is valid.
*/
unsigned int backend_priv_set_mask:COGL_MATERIAL_N_BACKENDS;
/* Weak materials don't count as dependants on their parents which
* means that the parent material can be modified without
* considering how the modifications may affect the weak material.
*/
unsigned int is_weak:1;
/* Determines if material->big_state is valid */
unsigned int has_big_state:1;
/* By default blending is enabled automatically depending on the
* unlit color, the lighting colors or the texture format. The user
* can override this to explicitly enable or disable blending.
*
* This is a sparse property */
unsigned int blend_enable:3;
/* There are many factors that can determine if we need to enable
* blending, this holds our final decision */
unsigned int real_blend_enable:1;
unsigned int layers_cache_dirty:1;
unsigned int deprecated_get_layers_list_dirty:1;
/* For debugging purposes it's possible to associate a static const
* string with a material which can be an aid when trying to trace
* where the material originates from */
unsigned int has_static_breadcrumb:1;
/* There are multiple fragment processing backends for CoglMaterial,
* glsl, arbfp and fixed. This identifies the backend being used for
* the material and any private state the backend has associated
* with the material. */
unsigned int backend:3;
};
typedef struct _CoglMaterialBackend
{
int (*get_max_texture_units) (void);
gboolean (*start) (CoglMaterial *material,
int n_layers,
unsigned long materials_difference);
gboolean (*add_layer) (CoglMaterial *material,
CoglMaterialLayer *layer,
unsigned long layers_difference);
gboolean (*passthrough) (CoglMaterial *material);
gboolean (*end) (CoglMaterial *material,
unsigned long materials_difference);
void (*material_pre_change_notify) (CoglMaterial *material,
CoglMaterialState change,
const CoglColor *new_color);
void (*material_set_parent_notify) (CoglMaterial *material);
void (*layer_pre_change_notify) (CoglMaterial *owner,
CoglMaterialLayer *layer,
CoglMaterialLayerState change);
void (*free_priv) (CoglMaterial *material);
void (*free_layer_priv) (CoglMaterialLayer *layer);
} CoglMaterialBackend;
typedef enum
{
COGL_MATERIAL_PROGRAM_TYPE_GLSL = 1,
COGL_MATERIAL_PROGRAM_TYPE_ARBFP,
COGL_MATERIAL_PROGRAM_TYPE_FIXED
} CoglMaterialProgramType;
extern const CoglMaterialBackend *
_cogl_material_backends[COGL_MATERIAL_N_BACKENDS];
void
_cogl_material_init_default_material (void);
void
_cogl_material_init_default_layers (void);
/*
* SECTION:cogl-material-internals
* @short_description: Functions for creating custom primitives that make use
* of Cogl materials for filling.
*
* Normally you shouldn't need to use this API directly, but if you need to
* developing a custom/specialised primitive - probably using raw OpenGL - then
* this API aims to expose enough of the material internals to support being
* able to fill your geometry according to a given Cogl material.
*/
gboolean
_cogl_material_get_real_blend_enabled (CoglMaterial *material);
gboolean
_cogl_material_layer_has_user_matrix (CoglMaterialLayer *layer);
/*
* Calls the pre_paint method on the layer texture if there is
* one. This will determine whether mipmaps are needed based on the
* filter settings.
*/
void
_cogl_material_layer_pre_paint (CoglMaterialLayer *layerr);
/*
* Calls the pre_paint method on the layer texture if there is
* one. This will determine whether mipmaps are needed based on the
* filter settings.
*/
void
_cogl_material_pre_paint_for_layer (CoglMaterial *material,
int layer_id);
/*
* CoglMaterialFlushFlag:
* @COGL_MATERIAL_FLUSH_FALLBACK_MASK: The fallback_layers member is set to
* a guint32 mask of the layers that can't be supported with the user
* supplied texture and need to be replaced with fallback textures. (1 =
* fallback, and the least significant bit = layer 0)
* @COGL_MATERIAL_FLUSH_DISABLE_MASK: The disable_layers member is set to
* a guint32 mask of the layers that you want to completly disable
* texturing for (1 = fallback, and the least significant bit = layer 0)
* @COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE: The layer0_override_texture member is
* set to a GLuint OpenGL texture name to override the texture used for
* layer 0 of the material. This is intended for dealing with sliced
* textures where you will need to point to each of the texture slices in
* turn when drawing your geometry. Passing a value of 0 is the same as
* not passing the option at all.
* @COGL_MATERIAL_FLUSH_SKIP_GL_COLOR: When flushing the GL state for the
* material don't call glColor.
* @COGL_MATERIAL_FLUSH_WRAP_MODE_OVERRIDES: Specifies that a bitmask
* of overrides for the wrap modes for some or all layers is
* given.
*/
typedef enum _CoglMaterialFlushFlag
{
COGL_MATERIAL_FLUSH_FALLBACK_MASK = 1L<<0,
COGL_MATERIAL_FLUSH_DISABLE_MASK = 1L<<1,
COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE = 1L<<2,
COGL_MATERIAL_FLUSH_SKIP_GL_COLOR = 1L<<3,
COGL_MATERIAL_FLUSH_WRAP_MODE_OVERRIDES = 1L<<4
} CoglMaterialFlushFlag;
/* This isn't defined in the GLES headers */
#ifndef GL_CLAMP_TO_BORDER
#define GL_CLAMP_TO_BORDER 0x812d
#endif
/* GL_ALWAYS is just used here as a value that is known not to clash
* with any valid GL wrap modes.
*
* XXX: keep the values in sync with the CoglMaterialWrapMode enum
* so no conversion is actually needed.
*/
typedef enum _CoglMaterialWrapModeInternal
{
COGL_MATERIAL_WRAP_MODE_INTERNAL_REPEAT = GL_REPEAT,
COGL_MATERIAL_WRAP_MODE_INTERNAL_CLAMP_TO_EDGE = GL_CLAMP_TO_EDGE,
COGL_MATERIAL_WRAP_MODE_INTERNAL_CLAMP_TO_BORDER = GL_CLAMP_TO_BORDER,
COGL_MATERIAL_WRAP_MODE_INTERNAL_AUTOMATIC = GL_ALWAYS
} CoglMaterialWrapModeInternal;
typedef enum _CoglMaterialWrapModeOverride
{
COGL_MATERIAL_WRAP_MODE_OVERRIDE_NONE = 0,
COGL_MATERIAL_WRAP_MODE_OVERRIDE_REPEAT =
COGL_MATERIAL_WRAP_MODE_INTERNAL_REPEAT,
COGL_MATERIAL_WRAP_MODE_OVERRIDE_CLAMP_TO_EDGE =
COGL_MATERIAL_WRAP_MODE_INTERNAL_CLAMP_TO_EDGE,
COGL_MATERIAL_WRAP_MODE_OVERRIDE_CLAMP_TO_BORDER =
COGL_MATERIAL_WRAP_MODE_INTERNAL_CLAMP_TO_BORDER,
} CoglMaterialWrapModeOverride;
/* There can't be more than 32 layers because we need to fit a bitmask
of the layers into a guint32 */
#define COGL_MATERIAL_MAX_LAYERS 32
typedef struct _CoglMaterialWrapModeOverrides
{
struct
{
CoglMaterialWrapModeOverride s;
CoglMaterialWrapModeOverride t;
CoglMaterialWrapModeOverride p;
} values[COGL_MATERIAL_MAX_LAYERS];
} CoglMaterialWrapModeOverrides;
/*
* CoglMaterialFlushOptions:
*
*/
typedef struct _CoglMaterialFlushOptions
{
CoglMaterialFlushFlag flags;
guint32 fallback_layers;
guint32 disable_layers;
GLuint layer0_override_texture;
CoglMaterialWrapModeOverrides wrap_mode_overrides;
} CoglMaterialFlushOptions;
int
_cogl_get_max_texture_image_units (void);
void
_cogl_use_program (GLuint gl_program, CoglMaterialProgramType type);
unsigned int
_cogl_get_n_args_for_combine_func (GLint func);
/*
* _cogl_material_weak_copy:
* @material: A #CoglMaterial object
* @callback: A callback to notify when your weak material is destroyed
* @user_data: Private data to pass to your given callback.
*
* Returns a weak copy of the given source @material. Unlike a normal
* copy no internal reference is taken on the source @material and you
* can expect that later modifications of the source material (or in
* fact any other material) can result in the weak material being
* destroyed.
*
* To understand this better its good to know a bit about the internal
* design of #CoglMaterial...
*
* Internally #CoglMaterial<!-- -->s are represented as a graph of
* property diff's, where each node is a diff of properties that gets
* applied on top of its parent. Copying a material creates an empty
* diff and a child->parent relationship between the empty diff and
* the source @material, parent.
*
* Because of this internal graph design a single #CoglMaterial may
* indirectly depend on a chain of ancestors to fully define all of
* its properties. Because a node depends on its ancestors it normally
* owns a reference to its parent to stop it from being freed. Also if
* you try to modify a material with children we internally use a
* copy-on-write mechanism to ensure that you don't indirectly change
* the properties those children.
*
* Weak materials avoid the use of copy-on-write to preserve the
* integrity of weak dependants and instead weak dependants are
* simply destroyed allowing the parent to be modified directly. Also
* because weak materials don't own a reference to their parent they
* won't stop the source @material from being freed when the user
* releases their reference on it.
*
* Because weak materials don't own a reference on their parent they
* are the recommended mechanism for creating derived materials that you
* want to cache as a private property of the original material
* because they won't result in a circular dependency.
*
* An example use case:
*
* Consider for example you are implementing a custom primitive that is
* not compatible with certain source materials. To handle this you
* implement a validation stage that given an arbitrary material as
* input will create a derived material that is suitable for drawing
* your primitive.
*
* Because you don't want to have to repeat this validation every time
* the same incompatible material is given as input you want to cache
* the result as a private property of the original material. If the
* derived material were created using cogl_material_copy that would
* create a circular dependency so the original material can never be
* freed.
*
* If you instead create a weak copy you won't stop the original material
* from being freed if it's no longer needed, and you will instead simply
* be notified that your weak material has been destroyed.
*
* This is the recommended coding pattern for validating an input
* material and caching a derived result:
* |[
* static CoglUserDataKey _cogl_my_cache_key;
*
* typedef struct {
* CoglMaterial *validated_source;
* } MyValidatedMaterialCache;
*
* static void
* destroy_cache_cb (CoglObject *object, void *user_data)
* {
* g_slice_free (MyValidatedMaterialCache, user_data);
* }
*
* static void
* invalidate_cache_cb (CoglMaterial *destroyed, void *user_data)
* {
* MyValidatedMaterialCache *cache = user_data;
* cogl_object_unref (cache->validated_source);
* cache->validated_source = NULL;
* }
*
* static CoglMaterial *
* get_validated_material (CoglMaterial *source)
* {
* MyValidatedMaterialCache *cache =
* cogl_object_get_user_data (COGL_OBJECT (source),
* &_cogl_my_cache_key);
* if (G_UNLIKELY (cache == NULL))
* {
* cache = g_slice_new (MyValidatedMaterialCache);
* cogl_object_set_user_data (COGL_OBJECT (source),
* &_cogl_my_cache_key,
* cache, destroy_cache_cb);
* cache->validated_source = source;
* }
*
* if (G_UNLIKELY (cache->validated_source == NULL))
* {
* cache->validated_source = source;
*
* /&nbsp;* Start validating source... *&nbsp;/
*
* /&nbsp;* If you find you need to change something... *&nbsp;/
* if (cache->validated_source == source)
* cache->validated_source =
* cogl_material_weak_copy (source,
* invalidate_cache_cb,
* cache);
*
* /&nbsp;* Modify cache->validated_source *&nbsp;/
* }
*
* return cache->validated_source;
* }
* ]|
*/
CoglMaterial *
_cogl_material_weak_copy (CoglMaterial *material,
CoglMaterialDestroyCallback callback,
void *user_data);
void
_cogl_material_set_backend (CoglMaterial *material, int backend);
CoglMaterial *
_cogl_material_get_parent (CoglMaterial *material);
void
_cogl_material_get_colorubv (CoglMaterial *material,
guint8 *color);
unsigned long
_cogl_material_compare_differences (CoglMaterial *material0,
CoglMaterial *material1);
gboolean
_cogl_material_equal (CoglMaterial *material0,
CoglMaterial *material1,
gboolean skip_gl_color);
CoglMaterial *
_cogl_material_journal_ref (CoglMaterial *material);
void
_cogl_material_journal_unref (CoglMaterial *material);
void
_cogl_material_layer_get_wrap_modes (CoglMaterialLayer *layer,
CoglMaterialWrapModeInternal *wrap_mode_s,
CoglMaterialWrapModeInternal *wrap_mode_t,
CoglMaterialWrapModeInternal *wrap_mode_r);
void
_cogl_material_layer_get_filters (CoglMaterialLayer *layer,
CoglMaterialFilter *min_filter,
CoglMaterialFilter *mag_filter);
void
_cogl_material_get_layer_filters (CoglMaterial *material,
int layer_index,
CoglMaterialFilter *min_filter,
CoglMaterialFilter *mag_filter);
CoglMaterialFilter
_cogl_material_get_layer_min_filter (CoglMaterial *material,
int layer_index);
CoglMaterialFilter
_cogl_material_get_layer_mag_filter (CoglMaterial *material,
int layer_index);
void
_cogl_material_texture_storage_change_notify (CoglHandle texture);
void
_cogl_material_apply_legacy_state (CoglMaterial *material);
void
_cogl_material_apply_overrides (CoglMaterial *material,
CoglMaterialFlushOptions *options);
CoglMaterialBlendEnable
_cogl_material_get_blend_enabled (CoglMaterial *material);
void
_cogl_material_set_blend_enabled (CoglMaterial *material,
CoglMaterialBlendEnable enable);
void
_cogl_material_set_static_breadcrumb (CoglMaterial *material,
const char *breadcrumb);
unsigned long
_cogl_material_get_age (CoglMaterial *material);
CoglMaterial *
_cogl_material_get_authority (CoglMaterial *material,
unsigned long difference);
unsigned long
_cogl_material_layer_compare_differences (CoglMaterialLayer *layer0,
CoglMaterialLayer *layer1);
CoglMaterialLayer *
_cogl_material_layer_get_authority (CoglMaterialLayer *layer,
unsigned long difference);
CoglHandle
_cogl_material_layer_get_texture (CoglMaterialLayer *layer);
CoglHandle
_cogl_material_get_layer_texture (CoglMaterial *material,
int layer_index);
typedef gboolean (*CoglMaterialInternalLayerCallback) (CoglMaterialLayer *layer,
void *user_data);
void
_cogl_material_foreach_layer_internal (CoglMaterial *material,
CoglMaterialInternalLayerCallback callback,
void *user_data);
int
_cogl_material_layer_get_unit_index (CoglMaterialLayer *layer);
void
_cogl_material_get_layer_combine_constant (CoglMaterial *material,
int layer_index,
float *constant);
void
_cogl_material_prune_to_n_layers (CoglMaterial *material, int n);
#endif /* __COGL_MATERIAL_PRIVATE_H */