1
0
Fork 0
mutter-performance-source/cogl/cogl-texture.h
Robert Bragg 4c3dadd35e Add a strong CoglTexture type to replace CoglHandle
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.

We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.

The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:

  cogl_texture_get_width
  cogl_texture_get_height
  cogl_texture_can_repeat
  cogl_texture_can_mipmap
  cogl_texture_generate_mipmap;
  cogl_texture_get_format
  cogl_texture_set_region
  cogl_texture_get_region

Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.

We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.

The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface.  These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace.  It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need.  Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2011-09-21 15:27:03 +01:00

509 lines
17 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009,2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
#if !defined(__COGL_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
#error "Only <cogl/cogl.h> can be included directly."
#endif
#ifndef __COGL_TEXTURE_H__
#define __COGL_TEXTURE_H__
#include <cogl/cogl-types.h>
#include <cogl/cogl-defines.h>
#if defined (COGL_ENABLE_EXPERIMENTAL_API)
#include <cogl/cogl-pixel-buffer.h>
#endif
G_BEGIN_DECLS
/**
* SECTION:cogl-texture
* @short_description: Fuctions for creating and manipulating textures
*
* Cogl allows creating and manipulating textures using a uniform
* API that tries to hide all the various complexities of creating,
* loading and manipulating textures.
*/
typedef struct _CoglTexture CoglTexture;
#define COGL_TEXTURE(X) ((CoglTexture *)X)
#define COGL_TEXTURE_MAX_WASTE 127
/**
* COGL_TEXTURE_ERROR:
*
* #GError domain for texture errors.
*
* Since: 2.0
* Stability: Unstable
*/
#define COGL_TEXTURE_ERROR (cogl_texture_error_quark ())
/**
* CoglTextureError:
* @COGL_TEXTURE_ERROR_SIZE: Unsupported size
*
* Error codes that can be thrown when allocating textures.
*
* Since: 2.0
* Stability: Unstable
*/
typedef enum {
COGL_TEXTURE_ERROR_SIZE,
COGL_TEXTURE_ERROR_FORMAT,
COGL_TEXTURE_ERROR_BAD_PARAMETER
} CoglTextureError;
GQuark cogl_texture_error_quark (void);
/**
* cogl_texture_new_with_size:
* @width: width of texture in pixels.
* @height: height of texture in pixels.
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
* texture.
*
* Creates a new #CoglTexture with the specified dimensions and pixel format.
*
* Return value: A newly created #CoglTexture or %NULL on failure
*
* Since: 0.8
*/
CoglTexture *
cogl_texture_new_with_size (unsigned int width,
unsigned int height,
CoglTextureFlags flags,
CoglPixelFormat internal_format);
/**
* cogl_texture_new_from_file:
* @filename: the file to load
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
* texture. If %COGL_PIXEL_FORMAT_ANY is given then a premultiplied
* format similar to the format of the source data will be used. The
* default blending equations of Cogl expect premultiplied color data;
* the main use of passing a non-premultiplied format here is if you
* have non-premultiplied source data and are going to adjust the blend
* mode (see cogl_material_set_blend()) or use the data for something
* other than straight blending.
* @error: return location for a #GError or %NULL
*
* Creates a #CoglTexture from an image file.
*
* Return value: A newly created #CoglTexture or %NULL on failure
*
* Since: 0.8
*/
CoglTexture *
cogl_texture_new_from_file (const char *filename,
CoglTextureFlags flags,
CoglPixelFormat internal_format,
GError **error);
/**
* cogl_texture_new_from_data:
* @width: width of texture in pixels
* @height: height of texture in pixels
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @format: the #CoglPixelFormat the buffer is stored in in RAM
* @internal_format: the #CoglPixelFormat that will be used for storing
* the buffer on the GPU. If COGL_PIXEL_FORMAT_ANY is given then a
* premultiplied format similar to the format of the source data will
* be used. The default blending equations of Cogl expect premultiplied
* color data; the main use of passing a non-premultiplied format here
* is if you have non-premultiplied source data and are going to adjust
* the blend mode (see cogl_material_set_blend()) or use the data for
* something other than straight blending.
* @rowstride: the memory offset in bytes between the starts of
* scanlines in @data
* @data: pointer the memory region where the source buffer resides
*
* Creates a new #CoglTexture based on data residing in memory.
*
* Return value: A newly created #CoglTexture or %NULL on failure
*
* Since: 0.8
*/
CoglTexture *
cogl_texture_new_from_data (unsigned int width,
unsigned int height,
CoglTextureFlags flags,
CoglPixelFormat format,
CoglPixelFormat internal_format,
unsigned int rowstride,
const guint8 *data);
/**
* cogl_texture_new_from_foreign:
* @gl_handle: opengl handle of foreign texture.
* @gl_target: opengl target type of foreign texture
* @width: width of foreign texture
* @height: height of foreign texture.
* @x_pot_waste: horizontal waste on the right hand edge of the texture.
* @y_pot_waste: vertical waste on the bottom edge of the texture.
* @format: format of the foreign texture.
*
* Creates a #CoglTexture based on an existing OpenGL texture; the
* width, height and format are passed along since it is not always
* possible to query these from OpenGL.
*
* The waste arguments allow you to create a Cogl texture that maps to
* a region smaller than the real OpenGL texture. For instance if your
* hardware only supports power-of-two textures you may load a
* non-power-of-two image into a larger power-of-two texture and use
* the waste arguments to tell Cogl which region should be mapped to
* the texture coordinate range [0:1].
*
* Return value: A newly created #CoglTexture or %NULL on failure
*
* Since: 0.8
*/
CoglTexture *
cogl_texture_new_from_foreign (GLuint gl_handle,
GLenum gl_target,
GLuint width,
GLuint height,
GLuint x_pot_waste,
GLuint y_pot_waste,
CoglPixelFormat format);
/**
* cogl_texture_new_from_bitmap:
* @bitmap: A #CoglBitmap pointer
* @flags: Optional flags for the texture, or %COGL_TEXTURE_NONE
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
* texture
*
* Creates a #CoglTexture from a #CoglBitmap.
*
* Return value: A newly created #CoglTexture or %NULL on failure
*
* Since: 1.0
*/
CoglTexture *
cogl_texture_new_from_bitmap (CoglBitmap *bitmap,
CoglTextureFlags flags,
CoglPixelFormat internal_format);
/**
* cogl_is_texture:
* @object: A #CoglObject pointer
*
* Gets whether the given object references a texture object.
*
* Return value: %TRUE if the handle references a texture, and
* %FALSE otherwise
*/
gboolean
cogl_is_texture (void *object);
/**
* cogl_texture_get_width:
* @texture a #CoglTexture pointer.
*
* Queries the width of a cogl texture.
*
* Return value: the width of the GPU side texture in pixels
*/
unsigned int
cogl_texture_get_width (CoglTexture *texture);
/**
* cogl_texture_get_height:
* @texture a #CoglTexture pointer.
*
* Queries the height of a cogl texture.
*
* Return value: the height of the GPU side texture in pixels
*/
unsigned int
cogl_texture_get_height (CoglTexture *texture);
/**
* cogl_texture_get_format:
* @texture a #CoglTexture pointer.
*
* Queries the #CoglPixelFormat of a cogl texture.
*
* Return value: the #CoglPixelFormat of the GPU side texture
*/
CoglPixelFormat
cogl_texture_get_format (CoglTexture *texture);
/**
* cogl_texture_get_rowstride:
* @texture a #CoglTexture pointer.
*
* Queries the rowstride of a cogl texture.
*
* Return value: the offset in bytes between each consequetive row of pixels
*/
unsigned int
cogl_texture_get_rowstride (CoglTexture *texture);
/**
* cogl_texture_get_max_waste:
* @texture a #CoglTexture pointer.
*
* Queries the maximum wasted (unused) pixels in one dimension of a GPU side
* texture.
*
* Return value: the maximum waste
*/
int
cogl_texture_get_max_waste (CoglTexture *texture);
/**
* cogl_texture_is_sliced:
* @texture a #CoglTexture pointer.
*
* Queries if a texture is sliced (stored as multiple GPU side tecture
* objects).
*
* Return value: %TRUE if the texture is sliced, %FALSE if the texture
* is stored as a single GPU texture
*/
gboolean
cogl_texture_is_sliced (CoglTexture *texture);
/**
* cogl_texture_get_gl_texture:
* @texture a #CoglTexture pointer.
* @out_gl_handle: (out) (allow-none): pointer to return location for the
* textures GL handle, or %NULL.
* @out_gl_target: (out) (allow-none): pointer to return location for the
* GL target type, or %NULL.
*
* Queries the GL handles for a GPU side texture through its #CoglTexture.
*
* If the texture is spliced the data for the first sub texture will be
* queried.
*
* Return value: %TRUE if the handle was successfully retrieved, %FALSE
* if the handle was invalid
*/
gboolean
cogl_texture_get_gl_texture (CoglTexture *texture,
GLuint *out_gl_handle,
GLenum *out_gl_target);
/**
* cogl_texture_get_data:
* @texture a #CoglTexture pointer.
* @format: the #CoglPixelFormat to store the texture as.
* @rowstride: the rowstride of @data or retrieved from texture if none is
* specified.
* @data: memory location to write contents of buffer, or %NULL if we're
* only querying the data size through the return value.
*
* Copies the pixel data from a cogl texture to system memory.
*
* Return value: the size of the texture data in bytes, or 0 if the texture
* is not valid
*/
int
cogl_texture_get_data (CoglTexture *texture,
CoglPixelFormat format,
unsigned int rowstride,
guint8 *data);
/**
* cogl_texture_set_region:
* @texture a #CoglTexture.
* @src_x: upper left coordinate to use from source data.
* @src_y: upper left coordinate to use from source data.
* @dst_x: upper left destination horizontal coordinate.
* @dst_y: upper left destination vertical coordinate.
* @dst_width: width of destination region to write.
* @dst_height: height of destination region to write.
* @width: width of source data buffer.
* @height: height of source data buffer.
* @format: the #CoglPixelFormat used in the source buffer.
* @rowstride: rowstride of source buffer (computed from width if none
* specified)
* @data: the actual pixel data.
*
* Sets the pixels in a rectangular subregion of @handle from an in-memory
* buffer containing pixel data.
*
* Return value: %TRUE if the subregion upload was successful, and
* %FALSE otherwise
*/
gboolean
cogl_texture_set_region (CoglTexture *texture,
int src_x,
int src_y,
int dst_x,
int dst_y,
unsigned int dst_width,
unsigned int dst_height,
int width,
int height,
CoglPixelFormat format,
unsigned int rowstride,
const guint8 *data);
#if defined (COGL_ENABLE_EXPERIMENTAL_API)
#define cogl_texture_set_region_from_bitmap \
cogl_texture_set_region_from_bitmap_EXP
/**
* cogl_texture_set_region_from_bitmap:
* @texture a #CoglTexture pointer
* @src_x: upper left coordinate to use from the source bitmap.
* @src_y: upper left coordinate to use from the source bitmap
* @dst_x: upper left destination horizontal coordinate.
* @dst_y: upper left destination vertical coordinate.
* @dst_width: width of destination region to write.
* @dst_height: height of destination region to write.
* @bitmap: The source bitmap to read from
*
* Copies a specified source region from @bitmap to the position
* (@src_x, @src_y) of the given destination texture @handle.
*
* Return value: %TRUE if the subregion upload was successful, and
* %FALSE otherwise
*
* Since: 1.8
* Stability: unstable
*/
gboolean
cogl_texture_set_region_from_bitmap (CoglTexture *texture,
int src_x,
int src_y,
int dst_x,
int dst_y,
unsigned int dst_width,
unsigned int dst_height,
CoglBitmap *bitmap);
#endif
/**
* cogl_texture_new_from_sub_texture:
* @full_texture: a #CoglTexture pointer
* @sub_x: X coordinate of the top-left of the subregion
* @sub_y: Y coordinate of the top-left of the subregion
* @sub_width: Width in pixels of the subregion
* @sub_height: Height in pixels of the subregion
*
* Creates a new texture which represents a subregion of another
* texture. The GL resources will be shared so that no new texture
* data is actually allocated.
*
* Sub textures have undefined behaviour texture coordinates outside
* of the range [0,1] are used. They also do not work with
* CoglVertexBuffers.
*
* The sub texture will keep a reference to the full texture so you do
* not need to keep one separately if you only want to use the sub
* texture.
*
* Return value: A newly created #CoglTexture or %NULL on failure
* Since: 1.2
*/
CoglTexture *
cogl_texture_new_from_sub_texture (CoglTexture *full_texture,
int sub_x,
int sub_y,
int sub_width,
int sub_height);
#if defined (COGL_ENABLE_EXPERIMENTAL_API)
#define cogl_texture_new_from_buffer cogl_texture_new_from_buffer_EXP
/**
* cogl_texture_new_from_buffer:
* @buffer: A #CoglPixelBuffer pointer
* @width: width of texture in pixels or 0
* @height: height of texture in pixels or 0
* @flags: optional flags for the texture, or %COGL_TEXTURE_NONE
* @format: the #CoglPixelFormat the buffer is stored in in RAM
* @internal_format: the #CoglPixelFormat that will be used for storing
* the buffer on the GPU. If %COGL_PIXEL_FORMAT_ANY is given then a
* premultiplied format similar to the format of the source data will
* be used. The default blending equations of Cogl expect premultiplied
* color data; the main use of passing a non-premultiplied format here
* is if you have non-premultiplied source data and are going to adjust
* the blend mode (see cogl_material_set_blend()) or use the data for
* something other than straight blending
* @rowstride: the memory offset in bytes between the starts of
* scanlines in @data. If 0 is given the row stride will be deduced from
* @width and @format or the stride given by cogl_pixel_buffer_new_for_size()
* @offset: offset in bytes in @buffer from where the texture data starts
*
* Creates a new texture using the buffer specified by @handle. If the buffer
* has been created using cogl_pixel_buffer_new_for_size() it's possible to omit
* the height and width values already specified at creation time.
*
* Return value: A newly created #CoglTexture or %NULL on failure
*
* Since: 1.2
* Stability: Unstable
*/
CoglTexture *
cogl_texture_new_from_buffer (CoglPixelBuffer *buffer,
unsigned int width,
unsigned int height,
CoglTextureFlags flags,
CoglPixelFormat format,
CoglPixelFormat internal_format,
unsigned int rowstride,
unsigned int offset);
#endif
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_texture_ref:
* @texture: a #CoglTexture.
*
* Increment the reference count for a cogl texture.
*
* Deprecated: 1.2: Use cogl_object_ref() instead
*
* Return value: the @texture pointer.
*/
void *
cogl_texture_ref (void *texture) G_GNUC_DEPRECATED;
/**
* cogl_texture_unref:
* @texture: a #CoglTexture.
*
* Decrement the reference count for a cogl texture.
*
* Deprecated: 1.2: Use cogl_object_unref() instead
*/
void
cogl_texture_unref (void *texture) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
G_END_DECLS
#endif /* __COGL_TEXTURE_H__ */