1
0
Fork 0
mutter-performance-source/cogl/cogl-clip-stack.h
Robert Bragg 54735dec84 Switch use of primitive glib types to c99 equivalents
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.

Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.

Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.

So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.

Instead of gsize we now use size_t

For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
2012-08-06 14:27:39 +01:00

219 lines
7 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009,2010 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
#ifndef __COGL_CLIP_STACK_H
#define __COGL_CLIP_STACK_H
#include "cogl2-path.h"
#include "cogl-matrix.h"
#include "cogl-primitive.h"
#include "cogl-framebuffer.h"
/* The clip stack works like a GSList where only a pointer to the top
of the stack is stored. The empty clip stack is represented simply
by the NULL pointer. When an entry is added to or removed from the
stack the new top of the stack is returned. When an entry is pushed
a new clip stack entry is created which effectively takes ownership
of the reference on the old entry. Therefore unrefing the top entry
effectively loses ownership of all entries in the stack */
typedef struct _CoglClipStack CoglClipStack;
typedef struct _CoglClipStackRect CoglClipStackRect;
typedef struct _CoglClipStackWindowRect CoglClipStackWindowRect;
typedef struct _CoglClipStackPath CoglClipStackPath;
typedef struct _CoglClipStackPrimitive CoglClipStackPrimitive;
typedef enum
{
COGL_CLIP_STACK_RECT,
COGL_CLIP_STACK_WINDOW_RECT,
COGL_CLIP_STACK_PATH,
COGL_CLIP_STACK_PRIMITIVE
} CoglClipStackType;
/* A clip stack consists a list of entries. Each entry has a reference
* count and a link to its parent node. The child takes a reference on
* the parent and the CoglClipStack holds a reference to the top of
* the stack. There are no links back from the parent to the
* children. This allows stacks that have common ancestry to share the
* entries.
*
* For example, the following sequence of operations would generate
* the tree below:
*
* CoglClipStack *stack_a = NULL;
* stack_a = _cogl_clip_stack_push_rectangle (stack_a, ...);
* stack_a = _cogl_clip_stack_push_rectangle (stack_a, ...);
* stack_a = _cogl_clip_stack_push_from_path (stack_a, ...);
* CoglClipStack *stack_b = NULL;
* stack_b = cogl_clip_stack_push_window_rectangle (stack_b, ...);
*
* stack_a
* \ holds a ref to
* +-----------+
* | path node |
* |ref count 1|
* +-----------+
* \
* +-----------+ +-----------+
* both tops hold | rect node | | rect node |
* a ref to the |ref count 2|--|ref count 1|
* same rect node +-----------+ +-----------+
* /
* +-----------+
* | win. rect |
* |ref count 1|
* +-----------+
* / holds a ref to
* stack_b
*
*/
struct _CoglClipStack
{
CoglClipStackType type;
/* This will be null if there is no parent. If it is not null then
this node must be holding a reference to the parent */
CoglClipStack *parent;
/* All clip entries have a window-space bounding box which we can
use to calculate a scissor. The scissor limits the clip so that
we don't need to do a full stencil clear if the stencil buffer is
needed. This is stored in Cogl's coordinate space (ie, 0,0 is the
top left) */
int bounds_x0;
int bounds_y0;
int bounds_x1;
int bounds_y1;
unsigned int ref_count;
};
struct _CoglClipStackRect
{
CoglClipStack _parent_data;
/* The rectangle for this clip */
float x0;
float y0;
float x1;
float y1;
/* If this is true then the clip for this rectangle is entirely
described by the scissor bounds. This implies that the rectangle
is screen aligned and we don't need to use the stencil buffer to
set the clip. We keep the entry as a rect entry rather than a
window rect entry so that it will be easier to detect if the
modelview matrix is that same as when a rectangle is added to the
journal. In that case we can use the original clip coordinates
and modify the rectangle instead. */
CoglBool can_be_scissor;
/* The matrix that was current when the clip was set */
CoglMatrix matrix;
};
struct _CoglClipStackWindowRect
{
CoglClipStack _parent_data;
/* The window rect clip doesn't need any specific data because it
just adds to the scissor clip */
};
struct _CoglClipStackPath
{
CoglClipStack _parent_data;
/* The matrix that was current when the clip was set */
CoglMatrix matrix;
CoglPath *path;
};
struct _CoglClipStackPrimitive
{
CoglClipStack _parent_data;
/* The matrix that was current when the clip was set */
CoglMatrix matrix;
CoglPrimitive *primitive;
float bounds_x1;
float bounds_y1;
float bounds_x2;
float bounds_y2;
};
CoglClipStack *
_cogl_clip_stack_push_window_rectangle (CoglClipStack *stack,
int x_offset,
int y_offset,
int width,
int height);
CoglClipStack *
_cogl_clip_stack_push_rectangle (CoglClipStack *stack,
float x_1,
float y_1,
float x_2,
float y_2,
const CoglMatrix *modelview_matrix);
CoglClipStack *
_cogl_clip_stack_push_from_path (CoglClipStack *stack,
CoglPath *path,
const CoglMatrix *modelview_matrix);
CoglClipStack *
_cogl_clip_stack_push_primitive (CoglClipStack *stack,
CoglPrimitive *primitive,
float bounds_x1,
float bounds_y1,
float bounds_x2,
float bounds_y2,
const CoglMatrix *modelview_matrix);
CoglClipStack *
_cogl_clip_stack_pop (CoglClipStack *stack);
void
_cogl_clip_stack_get_bounds (CoglClipStack *stack,
int *scissor_x0,
int *scissor_y0,
int *scissor_x1,
int *scissor_y1);
void
_cogl_clip_stack_flush (CoglClipStack *stack,
CoglFramebuffer *framebuffer);
CoglClipStack *
_cogl_clip_stack_ref (CoglClipStack *stack);
void
_cogl_clip_stack_unref (CoglClipStack *stack);
#endif /* __COGL_CLIP_STACK_H */