* elliot/cookbook-consistency:
cookbook: Fixed typo
cookbook: Fix build so CSS files get installed
cookbook: Moved paragraph where it logically belongs
cookbook: Added some judicious note elements
cookbook: Added more information for contributors
cookbook: Link out to docbook site
cookbook: Made docbook element usage consistent
cookbook: Additional selectors in CSS stylesheet
cookbook: Copy the CSS file into the HTML build directory
This adds a COGL_OBJECT_INTERNAL_DEFINE macro and friends that are the
same as COGL_OBJECT_DEFINE except that they prefix the cogl_is_*
function with an underscore so that it doesn't get exported in the
shared library.
Previously COGL_OBJECT_DEFINE would always define deprecated
cogl_$type_{ref,unref} functions even if the type is new or if the
type is entirely internal. An application would still find it
difficult to use these because they wouldn't be in the headers, but it
still looks bad that they are exported from the shared library. This
patch changes it so that the deprecated ref counting functions are
defined using a separate macro and only the types that have these
functions in the headers call this macro.
Since 365605cf42, materials and layers are represented in a tree
structure that allows traversing up through parents and iterating down
through children. This re-works the related typedefs and reparenting
code so that they can be shared.
Under big GL, _cogl_texture_driver_size_supported uses the proxy
texture to check whether the given texture size is supported. Proxy
textures aren't available under GLES so previously this would just
return TRUE to assume all texture sizes are supported. This patch
makes it use glGetIntegerv with GL_MAX_TEXTURE_SIZE to give a second
best guess.
This fixes the sliced texture backend so that it will use slices when
the texture is too big.
When an intermediate buffer is used for downloading texture data it
was using the wrong byte length for a row so the copy back to the
user's buffer would fail.
The fallback for when glGetTexImage is not available renders the
texture to the framebuffer to read the data using glReadPixels. This
patch just sets the COGL_MATERIAL_FILTER_NEAREST filter mode on the
material before rendering to avoid linear filtering which would alter
the texture data.
The fallback for when glGetTexImage is not available draws parts of
the texture to the framebuffer and uses glReadPixels to extract the
data. However it was using cogl_rectangle to draw and then immediately
using raw glReadPixels to fetch the data. This won't cause a journal
flush so the rectangle won't necessarily have hit the framebuffer
yet. Instead it now uses cogl_read_pixels which does flush the
journal.
There were a few problems flushing texture overrides so that sliced
textures would not work:
* In _cogl_material_set_layer_texture it ignored the 'overriden'
parameter and always set texture_overridden to FALSE.
* cogl_texture_get_gl_texture wasn't being called correctly in
override_layer_texture_cb. It returns a gboolean to indicate the
error status but this boolean was being assigned to gl_target.
* _cogl_material_layer_texture_equal did not take into account the
override.
* _cogl_material_layer_get_texture_info did not return the overridden
texture so it would always use the first texture slice.
There was a lot of common code that was copied to all of the backends
to convert the data to a suitable format and wrap it into a CoglBitmap
so that it can be passed to _cogl_texture_driver_upload_subregion_to_gl.
This patch moves the common code to cogl-texture.c so that the virtual
just takes a CoglBitmap that is already in the right format.
Previously cogl_texture_get_data would pretty much directly pass on to
the get_data texture virtual function. This ended up with a lot of
common code that was copied to all of the backends. For example, the
method is expected to return the required data size if the data
pointer is NULL and to calculate its own rowstride if the rowstride is
0. Also it needs to convert the downloaded data if GL can't support
that format directly.
This patch moves the common code to cogl-texture.c so the virtual is
always called with a format that can be downloaded directly by GL and
with a valid rowstride. If the download fails then the virtual can
return FALSE in which case cogl-texture will use the draw and read
fallback.
For point sprites you are usually drawing the whole texture so you
most often want GL_CLAMP_TO_EDGE. This patch removes the override for
COGL_MATERIAL_WRAP_MODE_AUTOMATIC when point sprites are enabled for a
layer so that it will clamp to edge.
This adds a new API call to enable point sprite coordinate generation
for a material layer:
void
cogl_material_set_layer_point_sprite_coords_enabled (CoglHandle material,
int layer_index,
gboolean enable);
There is also a corresponding get function.
Enabling point sprite coords simply sets the GL_COORD_REPLACE of the
GL_POINT_SPRITE glTexEnv when flusing the material. There is no
separate application control for glEnable(GL_POINT_SPRITE). Instead it
is left permanently enabled under the assumption that it has no affect
unless GL_COORD_REPLACE is enabled for a texture unit.
http://bugzilla.openedhand.com/show_bug.cgi?id=2047
Recently I added a _cogl_debug_dump_materials_dot_file function for
debugging the sparse material state. This extends the state dumped to
include the graph of layer state also.
We were mistakenly only initializing layer->layer_index for new layers
associated with texture units > 0. This had gone unnoticed because
normally layers associated with texture unit0 have a layer index of 0
too. Mutter was hitting this issue because it was initializing layer 1
before layer 0 for one of its materials so layer 1 was temporarily
associated with texture unit 0.
* cally-merge:
cally: Add introspection generation
cally: Improving cally doc
cally: Cleaning CallyText
cally: Refactoring "window:create" and "window:destroy" emission code
cally: Use proper backend information on CallyActor
cally: Check HAVE_CONFIG_H on cally-util.c
docs: Fix Cally documentation
cally: Clean up the headers
Add binaries of the Cally examples to the ignore file
docs: Add Cally API reference
Avoid to load cally module on a11y examples
Add accessibility tests
Initialize accessibility support on clutter_init
Rename some methods and includes to avoid -Wshadow warnings
Cally initialization code
Add Cally
Toolkits and applications not written in C might still need access to
the Cally API to write accessibility extensions based on it for their
own native elements.
Previously cogl_set_fog would cause a flush of the Cogl journal and
would directly bang the GL state machine to setup fogging. As part of
the ongoing effort to track most state in CoglMaterial to support
renderlists this now adds an indirection so that cogl_set_fog now just
updates ctx->legacy_fog_state. The fogging state then gets enabled as a
legacy override similar to how the old depth testing API is handled.
Since we'll want to share the fallback logic with CoglVertexArray this
moves the malloc based fallback (for when OpenGL doesn't support vertex
or pixel buffer objects) into cogl-buffer.c.
Explicitly warn if we detect that a CoglBuffer is being freed while it
is still mapped. Previously we silently unmapped the buffer, but it's
not something we want to encourage.
This makes CoglBuffer track the last used bind target as a private
property. This is later used when binding a buffer to map instead of
always using the PIXEL_UNPACK target.
This also adds some additional sanity checks that code doesn't try to
nest binds to the same target or bind a buffer to multiple targets at
the same time.
This adds three new feature flags COGL_FEATURE_TEXTURE_NPOT_BASIC,
COGL_FEATURE_TEXTURE_NPOT_MIPMAP and COGL_FEATURE_TEXTURE_NPOT_REPEAT
that can tell you if your hardware supports non power of two textures,
npot textures + mipmaps and npot textures + wrap modes other than
CLAMP_TO_EDGE.
The pre-existing COGL_FEATURE_TEXTURE_NPOT feature implies all of the
above.
By default GLES 2 core supports npot textures but mipmaps and repeat
modes can only be used with power of two textures. This patch also makes
GLES check for the GL_OES_texture_npot extension to determine if mipmaps
and repeating are supported with npot textures.
glDisableVertexAttribArray was defined to glEnableVertexAttribArray so
it would probably cause crashes if it was ever used. Presumably
nothing is using these yet because the generic attributes are not yet
tied to shader attributes in a predictable way.
For testing purposes, either to identify bugs in Cogl or the driver or
simulate lack of PBO support COGL_DEBUG=disable-pbos can be used to
fallback to malloc instead.
The pango renderer was causing lots of override materials to be allocated
because the vertex_buffer API converts AUTOMATIC mode into REPEAT for
backwards compatibility. By explicitly setting the wrap mode to
CLAMP_TO_EDGE when creating the glyph_material then the vertex_buffer
API will leave it untouched.
This allows you to tell Cogl that you are planning to replace all the
buffer's data once it is mapped with cogl_buffer_map. This means if the
buffer is currently being accessed by the GPU then the driver doesn't
have to stall and wait for it to finish before it can access it from the
CPU and can instead potentially allocate a new buffer with undefined
data and map that.
This changes the cogl_is_XYZ function prototypes generated when using
the COGL_OBJECT_DEFINE macro to take a void * argument instead of a
CoglHandle argument.
This removes cogl_pixel_array_new which just took a size in bytes.
Without the image size and pixel format then the driver often doesn't
have enough information to allocate optimal GPU memory that can be
textured from directly. This is because GPUs often have ways to
spatially alter the layout of a texture to improve cache access patterns
which may require special alignment and padding dependant in the images
width, height and bpp.
Although currently we are limited by OpenGL because it doesn't let us
pass on the width and height when allocating a PBO, the hope is that we
can define a better extension at some point.
The usage hint should be implied by the CoglBuffer subclass type so the
public getter and setter APIs for manually changing the usage hint of a
CoglBuffer have now been removed.
Instead of having to extend cogl_is_buffer with new buffer types
manually this now adds a new COGL_BUFFER_DEFINE macro to be used instead
of COGL_OBJECT_DEFINE for CoglBuffer subclasses. This macro will
automatically register the new type with ctx->buffer_types which will
iterated by cogl_is_buffer. This is the same coding pattern used for
CoglTexture.
This adds a _cogl_debug_dump_materials_dot_file function that can be
used to dump all the descendants of the default material to a file using
the dot format which can then be converted to an image to visualize.
In _cogl_material_pre_change_notify if a material with descendants is
modified then we create a new material that is a copy of the one being
modified and reparent those descendants to the new material.
This patch ensures we drop the reference we get from cogl_material_copy
since we can rely on the descendants to keep the new material alive.
The commit to split the fragment processing backends out from
cogl-material.c (3e1323a636) broke the GLES 1 and 2 builds the
fix was to guard the code in each backend according to the
COGL_MATERIAL_BACKEND_XYZ defines which are setup in
cogl-material-private.h.
The documentation for cogl_vertex_buffer_indices_get_for_quads was
using ugly ASCII art to draw the diagrams. These have now been
replaced with PNG figures.
CoglMaterialWrapMode was missing from the cogl-sections.txt file so it
wasn't getting displayed. There were also no documented return values
from the getters.
The tesselator code uses some defines that it expects to be in the GL
headers such as GLAPI and GLAPIENTRY. These are used to mark the entry
points as exportable on each platform. We don't really want the
tesselator code to use these but we also don't want to modify the C
files so instead they are #defined to be empty in the stub glu.h. That
header is only included internally when building the tesselator/ files
so it shouldn't affect the rest of Cogl.
GLES also doesn't have a GLdouble type so we just #define this to be a
regular double.