2009-06-26 19:33:20 +00:00
|
|
|
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
|
|
|
|
|
2013-03-11 15:52:36 +00:00
|
|
|
/**
|
|
|
|
* SECTION:meta-window-actor
|
|
|
|
* @title: MetaWindowActor
|
|
|
|
* @short_description: An actor representing a top-level window in the scene graph
|
|
|
|
*/
|
|
|
|
|
2010-09-10 14:06:37 +00:00
|
|
|
#include <config.h>
|
|
|
|
|
2009-06-29 18:30:26 +00:00
|
|
|
#include <math.h>
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
#include <clutter/x11/clutter-x11.h>
|
2011-07-21 16:44:06 +00:00
|
|
|
#include <cogl/cogl-texture-pixmap-x11.h>
|
2010-11-11 22:18:02 +00:00
|
|
|
#include <gdk/gdk.h> /* for gdk_rectangle_union() */
|
2012-04-27 04:14:42 +00:00
|
|
|
#include <string.h>
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2011-03-06 00:29:12 +00:00
|
|
|
#include <meta/display.h>
|
|
|
|
#include <meta/errors.h>
|
2009-06-26 19:33:20 +00:00
|
|
|
#include "frame.h"
|
2011-03-06 00:29:12 +00:00
|
|
|
#include <meta/window.h>
|
2011-10-04 21:35:11 +00:00
|
|
|
#include <meta/meta-shaped-texture.h>
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
#include "compositor-private.h"
|
2013-08-16 12:23:40 +00:00
|
|
|
#include "meta-shaped-texture-private.h"
|
2010-11-11 15:21:36 +00:00
|
|
|
#include "meta-shadow-factory-private.h"
|
2010-10-18 17:27:14 +00:00
|
|
|
#include "meta-window-actor-private.h"
|
2012-04-27 04:14:42 +00:00
|
|
|
#include "meta-texture-rectangle.h"
|
2012-04-29 11:10:15 +00:00
|
|
|
#include "region-utils.h"
|
2014-04-01 02:04:10 +00:00
|
|
|
#include "meta-monitor-manager.h"
|
2013-11-21 20:25:08 +00:00
|
|
|
#include "meta-cullable.h"
|
2009-06-26 19:33:20 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
#include "meta-surface-actor.h"
|
|
|
|
#include "meta-surface-actor-x11.h"
|
|
|
|
|
2014-03-19 02:01:31 +00:00
|
|
|
#include "wayland/meta-wayland-surface.h"
|
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
struct _MetaWindowActorPrivate
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindow *window;
|
|
|
|
MetaCompositor *compositor;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2013-10-13 11:47:53 +00:00
|
|
|
MetaSurfaceActor *surface;
|
2013-11-05 03:13:33 +00:00
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
/* MetaShadowFactory only caches shadows that are actually in use;
|
|
|
|
* to avoid unnecessary recomputation we do two things: 1) we store
|
|
|
|
* both a focused and unfocused shadow for the window. If the window
|
|
|
|
* doesn't have different focused and unfocused shadow parameters,
|
|
|
|
* these will be the same. 2) when the shadow potentially changes we
|
|
|
|
* don't immediately unreference the old shadow, we just flag it as
|
|
|
|
* dirty and recompute it when we next need it (recompute_focused_shadow,
|
|
|
|
* recompute_unfocused_shadow.) Because of our extraction of
|
|
|
|
* size-invariant window shape, we'll often find that the new shadow
|
|
|
|
* is the same as the old shadow.
|
|
|
|
*/
|
|
|
|
MetaShadow *focused_shadow;
|
|
|
|
MetaShadow *unfocused_shadow;
|
|
|
|
|
2013-01-15 02:47:46 +00:00
|
|
|
/* A region that matches the shape of the window, including frame bounds */
|
2010-10-18 15:32:50 +00:00
|
|
|
cairo_region_t *shape_region;
|
2010-11-11 23:23:25 +00:00
|
|
|
/* The region we should clip to when painting the shadow */
|
|
|
|
cairo_region_t *shadow_clip;
|
2009-06-29 18:30:26 +00:00
|
|
|
|
2014-01-22 14:16:56 +00:00
|
|
|
/* Extracted size-invariant shape used for shadows */
|
|
|
|
MetaWindowShape *shadow_shape;
|
|
|
|
char * shadow_class;
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
guint send_frame_messages_timer;
|
|
|
|
gint64 frame_drawn_time;
|
|
|
|
|
2014-02-24 18:32:17 +00:00
|
|
|
guint repaint_scheduled_id;
|
|
|
|
guint allocation_changed_id;
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
/*
|
|
|
|
* These need to be counters rather than flags, since more plugins
|
|
|
|
* can implement same effect; the practicality of stacking effects
|
|
|
|
* might be dubious, but we have to at least handle it correctly.
|
|
|
|
*/
|
|
|
|
gint minimize_in_progress;
|
|
|
|
gint maximize_in_progress;
|
|
|
|
gint unmaximize_in_progress;
|
|
|
|
gint map_in_progress;
|
|
|
|
gint destroy_in_progress;
|
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
/* List of FrameData for recent frames */
|
|
|
|
GList *frames;
|
2014-02-24 21:00:12 +00:00
|
|
|
guint freeze_count;
|
2011-06-13 22:09:59 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
guint visible : 1;
|
2009-06-26 19:33:20 +00:00
|
|
|
guint disposed : 1;
|
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
/* If set, the client needs to be sent a _NET_WM_FRAME_DRAWN
|
|
|
|
* client message using the most recent frame in ->frames */
|
|
|
|
guint needs_frame_drawn : 1;
|
2012-01-07 22:21:32 +00:00
|
|
|
guint repaint_scheduled : 1;
|
2012-11-12 19:11:08 +00:00
|
|
|
|
2014-02-27 01:52:44 +00:00
|
|
|
guint needs_reshape : 1;
|
2010-11-11 21:24:43 +00:00
|
|
|
guint recompute_focused_shadow : 1;
|
|
|
|
guint recompute_unfocused_shadow : 1;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
guint needs_destroy : 1;
|
|
|
|
|
|
|
|
guint no_shadow : 1;
|
|
|
|
|
2012-01-07 22:21:32 +00:00
|
|
|
guint updates_frozen : 1;
|
2009-06-26 19:33:20 +00:00
|
|
|
};
|
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
typedef struct _FrameData FrameData;
|
|
|
|
|
|
|
|
struct _FrameData
|
|
|
|
{
|
|
|
|
int64_t frame_counter;
|
|
|
|
guint64 sync_request_serial;
|
|
|
|
gint64 frame_drawn_time;
|
|
|
|
};
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
enum
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
PROP_META_WINDOW = 1,
|
|
|
|
PROP_NO_SHADOW,
|
2010-11-11 21:24:43 +00:00
|
|
|
PROP_SHADOW_CLASS
|
2009-06-26 19:33:20 +00:00
|
|
|
};
|
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
static void meta_window_actor_dispose (GObject *object);
|
|
|
|
static void meta_window_actor_finalize (GObject *object);
|
|
|
|
static void meta_window_actor_constructed (GObject *object);
|
|
|
|
static void meta_window_actor_set_property (GObject *object,
|
|
|
|
guint prop_id,
|
|
|
|
const GValue *value,
|
|
|
|
GParamSpec *pspec);
|
|
|
|
static void meta_window_actor_get_property (GObject *object,
|
|
|
|
guint prop_id,
|
|
|
|
GValue *value,
|
|
|
|
GParamSpec *pspec);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-10-18 19:34:08 +00:00
|
|
|
static void meta_window_actor_paint (ClutterActor *actor);
|
2011-07-16 11:32:12 +00:00
|
|
|
|
2010-11-11 22:18:02 +00:00
|
|
|
static gboolean meta_window_actor_get_paint_volume (ClutterActor *actor,
|
|
|
|
ClutterPaintVolume *volume);
|
2011-07-16 11:32:12 +00:00
|
|
|
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
static gboolean meta_window_actor_has_shadow (MetaWindowActor *self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
static void meta_window_actor_handle_updates (MetaWindowActor *self);
|
|
|
|
|
2014-02-27 01:52:44 +00:00
|
|
|
static void check_needs_reshape (MetaWindowActor *self);
|
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
static void do_send_frame_drawn (MetaWindowActor *self, FrameData *frame);
|
|
|
|
static void do_send_frame_timings (MetaWindowActor *self,
|
|
|
|
FrameData *frame,
|
|
|
|
gint refresh_interval,
|
|
|
|
gint64 presentation_time);
|
|
|
|
|
2013-11-21 20:25:08 +00:00
|
|
|
static void cullable_iface_init (MetaCullableInterface *iface);
|
|
|
|
|
|
|
|
G_DEFINE_TYPE_WITH_CODE (MetaWindowActor, meta_window_actor, CLUTTER_TYPE_ACTOR,
|
|
|
|
G_IMPLEMENT_INTERFACE (META_TYPE_CULLABLE, cullable_iface_init));
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
static void
|
|
|
|
frame_data_free (FrameData *frame)
|
|
|
|
{
|
|
|
|
g_slice_free (FrameData, frame);
|
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_class_init (MetaWindowActorClass *klass)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
GObjectClass *object_class = G_OBJECT_CLASS (klass);
|
2010-10-18 19:34:08 +00:00
|
|
|
ClutterActorClass *actor_class = CLUTTER_ACTOR_CLASS (klass);
|
2009-06-26 19:33:20 +00:00
|
|
|
GParamSpec *pspec;
|
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
g_type_class_add_private (klass, sizeof (MetaWindowActorPrivate));
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
object_class->dispose = meta_window_actor_dispose;
|
|
|
|
object_class->finalize = meta_window_actor_finalize;
|
|
|
|
object_class->set_property = meta_window_actor_set_property;
|
|
|
|
object_class->get_property = meta_window_actor_get_property;
|
|
|
|
object_class->constructed = meta_window_actor_constructed;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-10-18 19:34:08 +00:00
|
|
|
actor_class->paint = meta_window_actor_paint;
|
2010-11-11 22:18:02 +00:00
|
|
|
actor_class->get_paint_volume = meta_window_actor_get_paint_volume;
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
pspec = g_param_spec_object ("meta-window",
|
|
|
|
"MetaWindow",
|
|
|
|
"The displayed MetaWindow",
|
|
|
|
META_TYPE_WINDOW,
|
2012-04-23 22:54:46 +00:00
|
|
|
G_PARAM_READWRITE | G_PARAM_CONSTRUCT_ONLY);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
g_object_class_install_property (object_class,
|
2010-10-18 17:27:14 +00:00
|
|
|
PROP_META_WINDOW,
|
2009-06-26 19:33:20 +00:00
|
|
|
pspec);
|
|
|
|
|
|
|
|
pspec = g_param_spec_boolean ("no-shadow",
|
|
|
|
"No shadow",
|
|
|
|
"Do not add shaddow to this window",
|
|
|
|
FALSE,
|
2010-10-18 19:34:08 +00:00
|
|
|
G_PARAM_READWRITE);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
g_object_class_install_property (object_class,
|
2010-10-18 17:27:14 +00:00
|
|
|
PROP_NO_SHADOW,
|
2009-06-26 19:33:20 +00:00
|
|
|
pspec);
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
pspec = g_param_spec_string ("shadow-class",
|
|
|
|
"Name of the shadow class for this window.",
|
|
|
|
"NULL means to use the default shadow class for this window type",
|
|
|
|
NULL,
|
|
|
|
G_PARAM_READWRITE);
|
2010-10-18 19:34:08 +00:00
|
|
|
|
|
|
|
g_object_class_install_property (object_class,
|
2010-11-11 21:24:43 +00:00
|
|
|
PROP_SHADOW_CLASS,
|
2010-10-18 19:34:08 +00:00
|
|
|
pspec);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_init (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
priv = self->priv = G_TYPE_INSTANCE_GET_PRIVATE (self,
|
2010-10-18 17:27:14 +00:00
|
|
|
META_TYPE_WINDOW_ACTOR,
|
|
|
|
MetaWindowActorPrivate);
|
2010-11-11 21:24:43 +00:00
|
|
|
priv->shadow_class = NULL;
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
2011-03-25 01:36:47 +00:00
|
|
|
static void
|
|
|
|
window_appears_focused_notify (MetaWindow *mw,
|
|
|
|
GParamSpec *arg1,
|
|
|
|
gpointer data)
|
|
|
|
{
|
|
|
|
clutter_actor_queue_redraw (CLUTTER_ACTOR (data));
|
|
|
|
}
|
|
|
|
|
2013-10-13 16:59:30 +00:00
|
|
|
static void
|
|
|
|
surface_allocation_changed_notify (ClutterActor *actor,
|
|
|
|
const ClutterActorBox *allocation,
|
|
|
|
ClutterAllocationFlags flags,
|
|
|
|
MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
meta_window_actor_sync_actor_geometry (self, FALSE);
|
2014-02-27 01:52:44 +00:00
|
|
|
meta_window_actor_update_shape (self);
|
2013-12-09 21:01:07 +00:00
|
|
|
}
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
static void
|
|
|
|
surface_repaint_scheduled (MetaSurfaceActor *actor,
|
|
|
|
gpointer user_data)
|
|
|
|
{
|
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (user_data);
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
|
|
|
priv->repaint_scheduled = TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
is_argb32 (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-02-25 00:22:56 +00:00
|
|
|
|
|
|
|
/* assume we're argb until we get the window (because
|
|
|
|
in practice we're drawing nothing, so we're fully
|
|
|
|
transparent)
|
|
|
|
*/
|
|
|
|
if (priv->surface)
|
|
|
|
return meta_surface_actor_is_argb32 (priv->surface);
|
|
|
|
else
|
|
|
|
return TRUE;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
}
|
|
|
|
|
2013-12-06 18:44:31 +00:00
|
|
|
static gboolean
|
|
|
|
is_non_opaque (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaWindow *window = priv->window;
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
return is_argb32 (self) || (window->opacity != 0xFF);
|
|
|
|
}
|
|
|
|
|
|
|
|
static gboolean
|
|
|
|
is_frozen (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-02-24 21:00:12 +00:00
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
return priv->surface == NULL || priv->freeze_count > 0;
|
2013-12-06 18:44:31 +00:00
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
static void
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
meta_window_actor_freeze (MetaWindowActor *self)
|
2013-12-09 21:01:07 +00:00
|
|
|
{
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-02-24 21:00:12 +00:00
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->freeze_count == 0 && priv->surface)
|
2014-02-24 21:00:12 +00:00
|
|
|
meta_surface_actor_set_frozen (priv->surface, TRUE);
|
|
|
|
|
|
|
|
priv->freeze_count ++;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
}
|
2009-06-26 19:33:20 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
static void
|
|
|
|
meta_window_actor_thaw (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2013-08-28 22:07:46 +00:00
|
|
|
|
2014-02-24 21:00:12 +00:00
|
|
|
if (priv->freeze_count <= 0)
|
|
|
|
g_error ("Error in freeze/thaw accounting");
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2014-02-24 21:00:12 +00:00
|
|
|
priv->freeze_count--;
|
|
|
|
if (priv->freeze_count > 0)
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
return;
|
2013-12-09 21:01:07 +00:00
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->surface)
|
|
|
|
meta_surface_actor_set_frozen (priv->surface, FALSE);
|
2014-02-24 21:00:12 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
/* We sometimes ignore moves and resizes on frozen windows */
|
|
|
|
meta_window_actor_sync_actor_geometry (self, FALSE);
|
2013-12-09 21:01:07 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
/* We do this now since we might be going right back into the
|
|
|
|
* frozen state */
|
|
|
|
meta_window_actor_handle_updates (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2014-02-24 18:32:17 +00:00
|
|
|
set_surface (MetaWindowActor *self,
|
|
|
|
MetaSurfaceActor *surface)
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
{
|
2014-02-24 18:32:17 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
|
2014-02-24 18:32:17 +00:00
|
|
|
if (priv->surface)
|
|
|
|
{
|
|
|
|
g_signal_handler_disconnect (priv->surface, priv->repaint_scheduled_id);
|
|
|
|
priv->repaint_scheduled_id = 0;
|
|
|
|
g_signal_handler_disconnect (priv->surface, priv->allocation_changed_id);
|
|
|
|
priv->allocation_changed_id = 0;
|
|
|
|
clutter_actor_remove_child (CLUTTER_ACTOR (self), CLUTTER_ACTOR (priv->surface));
|
|
|
|
g_object_unref (priv->surface);
|
|
|
|
}
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2014-02-24 18:32:17 +00:00
|
|
|
priv->surface = surface;
|
|
|
|
|
|
|
|
if (priv->surface)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2013-11-25 23:25:48 +00:00
|
|
|
g_object_ref_sink (priv->surface);
|
2014-02-24 18:32:17 +00:00
|
|
|
priv->repaint_scheduled_id = g_signal_connect (priv->surface, "repaint-scheduled",
|
|
|
|
G_CALLBACK (surface_repaint_scheduled), self);
|
|
|
|
priv->allocation_changed_id = g_signal_connect (priv->surface, "allocation-changed",
|
|
|
|
G_CALLBACK (surface_allocation_changed_notify), self);
|
2013-10-13 11:47:53 +00:00
|
|
|
clutter_actor_add_child (CLUTTER_ACTOR (self), CLUTTER_ACTOR (priv->surface));
|
2013-05-03 17:51:22 +00:00
|
|
|
|
2014-02-24 18:32:17 +00:00
|
|
|
/* If the previous surface actor was frozen, start out
|
|
|
|
* frozen as well... */
|
2014-02-24 21:00:12 +00:00
|
|
|
meta_surface_actor_set_frozen (priv->surface, priv->freeze_count > 0);
|
2014-02-27 01:52:44 +00:00
|
|
|
|
|
|
|
meta_window_actor_update_shape (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
2014-02-24 18:32:17 +00:00
|
|
|
}
|
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
void
|
2014-02-24 18:32:17 +00:00
|
|
|
meta_window_actor_update_surface (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaWindow *window = priv->window;
|
|
|
|
MetaSurfaceActor *surface_actor;
|
|
|
|
|
|
|
|
if (window->surface)
|
|
|
|
surface_actor = window->surface->surface_actor;
|
2014-02-25 00:22:56 +00:00
|
|
|
else if (!meta_is_wayland_compositor ())
|
2014-02-24 18:32:17 +00:00
|
|
|
surface_actor = meta_surface_actor_x11_new (window);
|
2014-02-25 00:22:56 +00:00
|
|
|
else
|
|
|
|
surface_actor = NULL;
|
2014-02-24 18:32:17 +00:00
|
|
|
|
|
|
|
set_surface (self, surface_actor);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_window_actor_constructed (GObject *object)
|
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (object);
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaWindow *window = priv->window;
|
2014-02-24 18:32:17 +00:00
|
|
|
|
2014-03-18 21:31:22 +00:00
|
|
|
priv->compositor = window->display->compositor;
|
2014-02-24 18:32:17 +00:00
|
|
|
|
|
|
|
meta_window_actor_update_surface (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2011-04-26 16:08:15 +00:00
|
|
|
meta_window_actor_update_opacity (self);
|
2013-01-15 02:47:46 +00:00
|
|
|
|
2013-11-21 21:25:20 +00:00
|
|
|
/* Start off with an empty shape region to maintain the invariant
|
|
|
|
* that it's always set */
|
2013-08-24 02:20:49 +00:00
|
|
|
priv->shape_region = cairo_region_create ();
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_dispose (GObject *object)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (object);
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaCompositor *compositor = priv->compositor;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
if (priv->disposed)
|
|
|
|
return;
|
|
|
|
|
|
|
|
priv->disposed = TRUE;
|
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
if (priv->send_frame_messages_timer != 0)
|
|
|
|
{
|
|
|
|
g_source_remove (priv->send_frame_messages_timer);
|
|
|
|
priv->send_frame_messages_timer = 0;
|
|
|
|
}
|
|
|
|
|
2013-01-15 02:40:46 +00:00
|
|
|
g_clear_pointer (&priv->shape_region, cairo_region_destroy);
|
|
|
|
g_clear_pointer (&priv->shadow_clip, cairo_region_destroy);
|
2009-06-29 18:30:26 +00:00
|
|
|
|
2013-01-15 02:37:11 +00:00
|
|
|
g_clear_pointer (&priv->shadow_class, g_free);
|
|
|
|
g_clear_pointer (&priv->focused_shadow, meta_shadow_unref);
|
|
|
|
g_clear_pointer (&priv->unfocused_shadow, meta_shadow_unref);
|
|
|
|
g_clear_pointer (&priv->shadow_shape, meta_window_shape_unref);
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2014-03-18 21:31:22 +00:00
|
|
|
compositor->windows = g_list_remove (compositor->windows, (gconstpointer) self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2013-01-15 02:37:11 +00:00
|
|
|
g_clear_object (&priv->window);
|
2011-03-08 03:22:19 +00:00
|
|
|
|
2014-02-24 18:32:17 +00:00
|
|
|
set_surface (self, NULL);
|
2009-08-07 16:14:48 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
G_OBJECT_CLASS (meta_window_actor_parent_class)->dispose (object);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_finalize (GObject *object)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (object);
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-08-07 15:47:43 +00:00
|
|
|
|
2013-03-04 15:00:42 +00:00
|
|
|
g_list_free_full (priv->frames, (GDestroyNotify) frame_data_free);
|
2009-08-07 15:47:43 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
G_OBJECT_CLASS (meta_window_actor_parent_class)->finalize (object);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_set_property (GObject *object,
|
|
|
|
guint prop_id,
|
|
|
|
const GValue *value,
|
|
|
|
GParamSpec *pspec)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (object);
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
switch (prop_id)
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
case PROP_META_WINDOW:
|
2012-04-23 22:54:46 +00:00
|
|
|
priv->window = g_value_dup_object (value);
|
2013-12-09 18:45:12 +00:00
|
|
|
g_signal_connect_object (priv->window, "notify::appears-focused",
|
|
|
|
G_CALLBACK (window_appears_focused_notify), self, 0);
|
2009-06-26 19:33:20 +00:00
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case PROP_NO_SHADOW:
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
gboolean newv = g_value_get_boolean (value);
|
|
|
|
|
2010-10-18 19:34:08 +00:00
|
|
|
if (newv == priv->no_shadow)
|
2009-06-26 19:33:20 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
priv->no_shadow = newv;
|
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
meta_window_actor_invalidate_shadow (self);
|
2010-11-04 21:02:23 +00:00
|
|
|
}
|
|
|
|
break;
|
2010-11-11 21:24:43 +00:00
|
|
|
case PROP_SHADOW_CLASS:
|
2010-10-18 19:34:08 +00:00
|
|
|
{
|
2010-11-11 21:24:43 +00:00
|
|
|
const char *newv = g_value_get_string (value);
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
if (g_strcmp0 (newv, priv->shadow_class) == 0)
|
2010-10-18 19:34:08 +00:00
|
|
|
return;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
g_free (priv->shadow_class);
|
|
|
|
priv->shadow_class = g_strdup (newv);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
meta_window_actor_invalidate_shadow (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_get_property (GObject *object,
|
|
|
|
guint prop_id,
|
|
|
|
GValue *value,
|
|
|
|
GParamSpec *pspec)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = META_WINDOW_ACTOR (object)->priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
switch (prop_id)
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
case PROP_META_WINDOW:
|
2009-06-26 19:33:20 +00:00
|
|
|
g_value_set_object (value, priv->window);
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case PROP_NO_SHADOW:
|
2009-06-26 19:33:20 +00:00
|
|
|
g_value_set_boolean (value, priv->no_shadow);
|
|
|
|
break;
|
2010-11-11 21:24:43 +00:00
|
|
|
case PROP_SHADOW_CLASS:
|
|
|
|
g_value_set_string (value, priv->shadow_class);
|
2010-10-18 19:34:08 +00:00
|
|
|
break;
|
2009-06-26 19:33:20 +00:00
|
|
|
default:
|
|
|
|
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
static const char *
|
|
|
|
meta_window_actor_get_shadow_class (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
|
|
|
if (priv->shadow_class != NULL)
|
|
|
|
return priv->shadow_class;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
MetaWindowType window_type = meta_window_get_window_type (priv->window);
|
|
|
|
|
|
|
|
switch (window_type)
|
|
|
|
{
|
|
|
|
case META_WINDOW_DROPDOWN_MENU:
|
|
|
|
return "dropdown-menu";
|
|
|
|
case META_WINDOW_POPUP_MENU:
|
|
|
|
return "popup-menu";
|
|
|
|
default:
|
|
|
|
{
|
|
|
|
MetaFrameType frame_type = meta_window_get_frame_type (priv->window);
|
|
|
|
return meta_frame_type_to_string (frame_type);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_window_actor_get_shadow_params (MetaWindowActor *self,
|
|
|
|
gboolean appears_focused,
|
|
|
|
MetaShadowParams *params)
|
|
|
|
{
|
|
|
|
const char *shadow_class = meta_window_actor_get_shadow_class (self);
|
|
|
|
|
|
|
|
meta_shadow_factory_get_params (meta_shadow_factory_get_default (),
|
|
|
|
shadow_class, appears_focused,
|
|
|
|
params);
|
|
|
|
}
|
|
|
|
|
2011-08-27 09:43:09 +00:00
|
|
|
void
|
2010-10-18 19:34:08 +00:00
|
|
|
meta_window_actor_get_shape_bounds (MetaWindowActor *self,
|
|
|
|
cairo_rectangle_int_t *bounds)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
2013-01-15 02:47:46 +00:00
|
|
|
cairo_region_get_extents (priv->shape_region, bounds);
|
2010-11-11 22:18:02 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
meta_window_actor_get_shadow_bounds (MetaWindowActor *self,
|
|
|
|
gboolean appears_focused,
|
|
|
|
cairo_rectangle_int_t *bounds)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaShadow *shadow = appears_focused ? priv->focused_shadow : priv->unfocused_shadow;
|
|
|
|
cairo_rectangle_int_t shape_bounds;
|
|
|
|
MetaShadowParams params;
|
|
|
|
|
|
|
|
meta_window_actor_get_shape_bounds (self, &shape_bounds);
|
|
|
|
meta_window_actor_get_shadow_params (self, appears_focused, ¶ms);
|
|
|
|
|
|
|
|
meta_shadow_get_bounds (shadow,
|
|
|
|
params.x_offset + shape_bounds.x,
|
|
|
|
params.y_offset + shape_bounds.y,
|
|
|
|
shape_bounds.width,
|
|
|
|
shape_bounds.height,
|
|
|
|
bounds);
|
2010-10-18 19:34:08 +00:00
|
|
|
}
|
|
|
|
|
2011-03-22 19:36:12 +00:00
|
|
|
/* If we have an ARGB32 window that we decorate with a frame, it's
|
|
|
|
* probably something like a translucent terminal - something where
|
|
|
|
* the alpha channel represents transparency rather than a shape. We
|
|
|
|
* don't want to show the shadow through the translucent areas since
|
|
|
|
* the shadow is wrong for translucent windows (it should be
|
|
|
|
* translucent itself and colored), and not only that, will /look/
|
|
|
|
* horribly wrong - a misplaced big black blob. As a hack, what we
|
|
|
|
* want to do is just draw the shadow as normal outside the frame, and
|
|
|
|
* inside the frame draw no shadow. This is also not even close to
|
|
|
|
* the right result, but looks OK. We also apply this approach to
|
|
|
|
* windows set to be partially translucent with _NET_WM_WINDOW_OPACITY.
|
|
|
|
*/
|
|
|
|
static gboolean
|
|
|
|
clip_shadow_under_window (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
2013-12-06 18:44:31 +00:00
|
|
|
return is_non_opaque (self) && priv->window->frame;
|
2011-03-22 19:36:12 +00:00
|
|
|
}
|
|
|
|
|
2010-10-18 19:34:08 +00:00
|
|
|
static void
|
|
|
|
meta_window_actor_paint (ClutterActor *actor)
|
|
|
|
{
|
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (actor);
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2010-11-11 23:23:25 +00:00
|
|
|
gboolean appears_focused = meta_window_appears_focused (priv->window);
|
|
|
|
MetaShadow *shadow = appears_focused ? priv->focused_shadow : priv->unfocused_shadow;
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
/* This window got damage when obscured; we set up a timer
|
|
|
|
* to send frame completion events, but since we're drawing
|
|
|
|
* the window now (for some other reason) cancel the timer
|
|
|
|
* and send the completion events normally */
|
|
|
|
if (priv->send_frame_messages_timer != 0)
|
|
|
|
{
|
|
|
|
g_source_remove (priv->send_frame_messages_timer);
|
|
|
|
priv->send_frame_messages_timer = 0;
|
|
|
|
}
|
|
|
|
|
2010-11-11 23:23:25 +00:00
|
|
|
if (shadow != NULL)
|
2010-10-18 19:34:08 +00:00
|
|
|
{
|
2010-11-11 23:23:25 +00:00
|
|
|
MetaShadowParams params;
|
|
|
|
cairo_rectangle_int_t shape_bounds;
|
2011-03-22 19:36:12 +00:00
|
|
|
cairo_region_t *clip = priv->shadow_clip;
|
2013-12-06 18:44:31 +00:00
|
|
|
MetaWindow *window = priv->window;
|
2010-11-11 23:23:25 +00:00
|
|
|
|
|
|
|
meta_window_actor_get_shape_bounds (self, &shape_bounds);
|
|
|
|
meta_window_actor_get_shadow_params (self, appears_focused, ¶ms);
|
|
|
|
|
2011-03-22 19:36:12 +00:00
|
|
|
/* The frame bounds are already subtracted from priv->shadow_clip
|
|
|
|
* if that exists.
|
|
|
|
*/
|
|
|
|
if (!clip && clip_shadow_under_window (self))
|
|
|
|
{
|
|
|
|
cairo_region_t *frame_bounds = meta_window_get_frame_bounds (priv->window);
|
|
|
|
cairo_rectangle_int_t bounds;
|
|
|
|
|
|
|
|
meta_window_actor_get_shadow_bounds (self, appears_focused, &bounds);
|
|
|
|
clip = cairo_region_create_rectangle (&bounds);
|
|
|
|
|
|
|
|
cairo_region_subtract (clip, frame_bounds);
|
|
|
|
}
|
|
|
|
|
2010-11-11 23:23:25 +00:00
|
|
|
meta_shadow_paint (shadow,
|
|
|
|
params.x_offset + shape_bounds.x,
|
|
|
|
params.y_offset + shape_bounds.y,
|
|
|
|
shape_bounds.width,
|
|
|
|
shape_bounds.height,
|
2013-12-06 18:44:31 +00:00
|
|
|
(clutter_actor_get_paint_opacity (actor) * params.opacity * window->opacity) / (255 * 255),
|
2011-03-22 19:36:12 +00:00
|
|
|
clip,
|
|
|
|
clip_shadow_under_window (self)); /* clip_strictly - not just as an optimization */
|
|
|
|
|
|
|
|
if (clip && clip != priv->shadow_clip)
|
|
|
|
cairo_region_destroy (clip);
|
2010-10-18 19:34:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
CLUTTER_ACTOR_CLASS (meta_window_actor_parent_class)->paint (actor);
|
|
|
|
}
|
|
|
|
|
2010-11-11 22:18:02 +00:00
|
|
|
static gboolean
|
|
|
|
meta_window_actor_get_paint_volume (ClutterActor *actor,
|
|
|
|
ClutterPaintVolume *volume)
|
|
|
|
{
|
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (actor);
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-02-05 19:06:32 +00:00
|
|
|
cairo_rectangle_int_t unobscured_bounds, bounds;
|
2010-11-11 22:18:02 +00:00
|
|
|
gboolean appears_focused = meta_window_appears_focused (priv->window);
|
|
|
|
ClutterVertex origin;
|
|
|
|
|
|
|
|
/* The paint volume is computed before paint functions are called
|
|
|
|
* so our bounds might not be updated yet. Force an update. */
|
2012-11-12 19:11:08 +00:00
|
|
|
meta_window_actor_handle_updates (self);
|
2010-11-11 22:18:02 +00:00
|
|
|
|
|
|
|
meta_window_actor_get_shape_bounds (self, &bounds);
|
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->surface)
|
|
|
|
{
|
|
|
|
if (meta_surface_actor_get_unobscured_bounds (priv->surface, &unobscured_bounds))
|
|
|
|
gdk_rectangle_intersect (&bounds, &unobscured_bounds, &bounds);
|
|
|
|
}
|
2014-02-21 19:39:25 +00:00
|
|
|
|
2010-11-11 22:18:02 +00:00
|
|
|
if (appears_focused ? priv->focused_shadow : priv->unfocused_shadow)
|
|
|
|
{
|
|
|
|
cairo_rectangle_int_t shadow_bounds;
|
|
|
|
|
|
|
|
/* We could compute an full clip region as we do for the window
|
|
|
|
* texture, but the shadow is relatively cheap to draw, and
|
|
|
|
* a little more complex to clip, so we just catch the case where
|
|
|
|
* the shadow is completely obscured and doesn't need to be drawn
|
|
|
|
* at all.
|
|
|
|
*/
|
|
|
|
|
|
|
|
meta_window_actor_get_shadow_bounds (self, appears_focused, &shadow_bounds);
|
|
|
|
gdk_rectangle_union (&bounds, &shadow_bounds, &bounds);
|
|
|
|
}
|
|
|
|
|
|
|
|
origin.x = bounds.x;
|
|
|
|
origin.y = bounds.y;
|
|
|
|
origin.z = 0.0f;
|
|
|
|
clutter_paint_volume_set_origin (volume, &origin);
|
|
|
|
|
|
|
|
clutter_paint_volume_set_width (volume, bounds.width);
|
|
|
|
clutter_paint_volume_set_height (volume, bounds.height);
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
static gboolean
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_has_shadow (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
if (priv->no_shadow)
|
|
|
|
return FALSE;
|
|
|
|
|
2010-11-11 23:43:35 +00:00
|
|
|
/* Leaving out shadows for maximized and fullscreen windows is an effeciency
|
|
|
|
* win and also prevents the unsightly effect of the shadow of maximized
|
|
|
|
* window appearing on an adjacent window */
|
2014-03-13 22:32:20 +00:00
|
|
|
if ((meta_window_get_maximized (priv->window) == META_MAXIMIZE_BOTH) ||
|
2010-11-11 23:43:35 +00:00
|
|
|
meta_window_is_fullscreen (priv->window))
|
|
|
|
return FALSE;
|
|
|
|
|
2011-09-05 00:49:40 +00:00
|
|
|
/*
|
|
|
|
* If we have two snap-tiled windows, we don't want the shadow to obstruct
|
|
|
|
* the other window.
|
|
|
|
*/
|
|
|
|
if (meta_window_get_tile_match (priv->window))
|
|
|
|
return FALSE;
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
/*
|
|
|
|
* Always put a shadow around windows with a frame - This should override
|
2010-10-18 19:34:08 +00:00
|
|
|
* the restriction about not putting a shadow around ARGB windows.
|
2009-06-26 19:33:20 +00:00
|
|
|
*/
|
2012-04-27 04:17:41 +00:00
|
|
|
if (meta_window_get_frame (priv->window))
|
|
|
|
return TRUE;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
/*
|
2013-12-06 18:44:31 +00:00
|
|
|
* Do not add shadows to non-opaque windows; eventually we should generate
|
|
|
|
* a shadow from the input shape for such windows.
|
2009-06-26 19:33:20 +00:00
|
|
|
*/
|
2013-12-06 18:44:31 +00:00
|
|
|
if (is_non_opaque (self))
|
2012-05-01 15:35:25 +00:00
|
|
|
return FALSE;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Add shadows to override redirect windows (e.g., Gtk menus).
|
|
|
|
*/
|
2011-07-19 22:05:30 +00:00
|
|
|
if (priv->window->override_redirect)
|
2012-05-01 15:35:25 +00:00
|
|
|
return TRUE;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2010-10-18 17:27:14 +00:00
|
|
|
* meta_window_actor_get_meta_window:
|
2013-02-15 18:42:08 +00:00
|
|
|
* @self: a #MetaWindowActor
|
2009-06-26 19:33:20 +00:00
|
|
|
*
|
2011-10-18 02:10:00 +00:00
|
|
|
* Gets the #MetaWindow object that the the #MetaWindowActor is displaying
|
2009-06-26 19:33:20 +00:00
|
|
|
*
|
2011-10-18 02:10:00 +00:00
|
|
|
* Return value: (transfer none): the displayed #MetaWindow
|
2009-06-26 19:33:20 +00:00
|
|
|
*/
|
|
|
|
MetaWindow *
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_get_meta_window (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
return self->priv->window;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2010-10-18 17:27:14 +00:00
|
|
|
* meta_window_actor_get_texture:
|
2013-02-15 18:42:08 +00:00
|
|
|
* @self: a #MetaWindowActor
|
2009-06-26 19:33:20 +00:00
|
|
|
*
|
2014-02-25 00:22:56 +00:00
|
|
|
* Gets the ClutterActor that is used to display the contents of the window,
|
|
|
|
* or NULL if no texture is shown yet, because the window is not mapped.
|
2009-06-26 19:33:20 +00:00
|
|
|
*
|
2011-10-18 02:10:00 +00:00
|
|
|
* Return value: (transfer none): the #ClutterActor for the contents
|
2009-06-26 19:33:20 +00:00
|
|
|
*/
|
|
|
|
ClutterActor *
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_get_texture (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-02-25 00:22:56 +00:00
|
|
|
if (self->priv->surface)
|
|
|
|
return CLUTTER_ACTOR (meta_surface_actor_get_texture (self->priv->surface));
|
|
|
|
else
|
|
|
|
return NULL;
|
2013-10-13 11:47:53 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* meta_window_actor_get_surface:
|
|
|
|
* @self: a #MetaWindowActor
|
|
|
|
*
|
2014-02-25 00:22:56 +00:00
|
|
|
* Gets the MetaSurfaceActor that draws the content of this window,
|
|
|
|
* or NULL if there is no surface yet associated with this window.
|
2013-10-13 11:47:53 +00:00
|
|
|
*
|
|
|
|
* Return value: (transfer none): the #MetaSurfaceActor for the contents
|
|
|
|
*/
|
|
|
|
MetaSurfaceActor *
|
|
|
|
meta_window_actor_get_surface (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
return self->priv->surface;
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
2011-01-18 18:34:15 +00:00
|
|
|
/**
|
|
|
|
* meta_window_actor_is_destroyed:
|
2013-02-15 18:42:08 +00:00
|
|
|
* @self: a #MetaWindowActor
|
2011-01-18 18:34:15 +00:00
|
|
|
*
|
|
|
|
* Gets whether the X window that the actor was displaying has been destroyed
|
|
|
|
*
|
|
|
|
* Return value: %TRUE when the window is destroyed, otherwise %FALSE
|
|
|
|
*/
|
|
|
|
gboolean
|
|
|
|
meta_window_actor_is_destroyed (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
return self->priv->disposed;
|
|
|
|
}
|
|
|
|
|
2013-11-14 20:44:07 +00:00
|
|
|
static gboolean
|
|
|
|
send_frame_messages_timeout (gpointer data)
|
2013-08-17 17:11:12 +00:00
|
|
|
{
|
|
|
|
MetaWindowActor *self = (MetaWindowActor *) data;
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
FrameData *frame = g_slice_new0 (FrameData);
|
|
|
|
|
|
|
|
frame->sync_request_serial = priv->window->sync_request_serial;
|
|
|
|
|
|
|
|
do_send_frame_drawn (self, frame);
|
|
|
|
do_send_frame_timings (self, frame, 0, 0);
|
|
|
|
|
|
|
|
priv->needs_frame_drawn = FALSE;
|
|
|
|
priv->send_frame_messages_timer = 0;
|
|
|
|
frame_data_free (frame);
|
|
|
|
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
queue_send_frame_messages_timeout (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaDisplay *display = meta_window_get_display (priv->window);
|
2013-08-17 17:11:12 +00:00
|
|
|
gint64 current_time = meta_compositor_monotonic_time_to_server_time (display, g_get_monotonic_time ());
|
|
|
|
MetaMonitorManager *monitor_manager = meta_monitor_manager_get ();
|
|
|
|
MetaWindow *window = priv->window;
|
|
|
|
|
|
|
|
MetaOutput *outputs;
|
|
|
|
guint n_outputs, i;
|
|
|
|
float refresh_rate = 60.0f;
|
|
|
|
gint interval, offset;
|
|
|
|
|
|
|
|
outputs = meta_monitor_manager_get_outputs (monitor_manager, &n_outputs);
|
|
|
|
for (i = 0; i < n_outputs; i++)
|
|
|
|
{
|
|
|
|
if (outputs[i].output_id == window->monitor->output_id && outputs[i].crtc)
|
|
|
|
{
|
|
|
|
refresh_rate = outputs[i].crtc->current_mode->refresh_rate;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
interval = (int)(1000000 / refresh_rate) * 6;
|
2013-10-07 15:51:12 +00:00
|
|
|
offset = MAX (0, priv->frame_drawn_time + interval - current_time) / 1000;
|
2013-08-17 17:11:12 +00:00
|
|
|
|
|
|
|
/* The clutter master clock source has already been added with META_PRIORITY_REDRAW,
|
|
|
|
* so the timer will run *after* the clutter frame handling, if a frame is ready
|
|
|
|
* to be drawn when the timer expires.
|
|
|
|
*/
|
|
|
|
priv->send_frame_messages_timer = g_timeout_add_full (META_PRIORITY_REDRAW, offset, send_frame_messages_timeout, self, NULL);
|
2014-04-10 16:58:58 +00:00
|
|
|
g_source_set_name_by_id (priv->send_frame_messages_timer, "[mutter] send_frame_messages_timeout");
|
2013-08-17 17:11:12 +00:00
|
|
|
}
|
|
|
|
|
2013-02-14 18:40:55 +00:00
|
|
|
void
|
|
|
|
meta_window_actor_queue_frame_drawn (MetaWindowActor *self,
|
|
|
|
gboolean no_delay_frame)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
FrameData *frame = g_slice_new0 (FrameData);
|
|
|
|
|
|
|
|
priv->needs_frame_drawn = TRUE;
|
|
|
|
|
|
|
|
frame->sync_request_serial = priv->window->sync_request_serial;
|
|
|
|
|
|
|
|
priv->frames = g_list_prepend (priv->frames, frame);
|
|
|
|
|
|
|
|
if (no_delay_frame)
|
|
|
|
{
|
|
|
|
ClutterActor *stage = clutter_actor_get_stage (CLUTTER_ACTOR (self));
|
|
|
|
clutter_stage_skip_sync_delay (CLUTTER_STAGE (stage));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!priv->repaint_scheduled)
|
2012-10-04 02:48:16 +00:00
|
|
|
{
|
2014-02-25 00:22:56 +00:00
|
|
|
gboolean is_obscured;
|
|
|
|
|
|
|
|
if (priv->surface)
|
|
|
|
is_obscured = meta_surface_actor_is_obscured (priv->surface);
|
|
|
|
else
|
|
|
|
is_obscured = FALSE;
|
2013-08-17 17:11:12 +00:00
|
|
|
|
2013-02-14 18:40:55 +00:00
|
|
|
/* A frame was marked by the client without actually doing any
|
2013-08-17 17:11:12 +00:00
|
|
|
* damage or any unobscured, or while we had the window frozen
|
|
|
|
* (e.g. during an interactive resize.) We need to make sure that the
|
2013-02-14 18:40:55 +00:00
|
|
|
* pre_paint/post_paint functions get called, enabling us to
|
|
|
|
* send a _NET_WM_FRAME_DRAWN. We do a 1-pixel redraw to get
|
2013-08-17 17:11:12 +00:00
|
|
|
* consistent timing with non-empty frames. If the window
|
|
|
|
* is completely obscured we fire off the send_frame_messages timeout.
|
2012-10-04 02:48:16 +00:00
|
|
|
*/
|
2013-08-17 17:11:12 +00:00
|
|
|
if (is_obscured)
|
|
|
|
{
|
|
|
|
queue_send_frame_messages_timeout (self);
|
|
|
|
}
|
Always map the client and frame windows
Traditionally, WMs unmap windows when minimizing them, and map them
when restoring them or wanting to show them for other reasons, like
upon creation.
However, as metacity morphed into mutter, we optionally chose to keep
windows mapped for the lifetime of the window under the user option
"live-window-previews", which makes the code keep windows mapped so it
can show window preview for minimized windows in other places, like
Alt-Tab and Expose.
I removed this preference two years ago mechanically, by removing all
the if statements, but never went through and cleaned up the code so
that windows are simply mapped for the lifetime of the window -- the
"architecture" of the old code that maps and unmaps on show/hide was
still there.
Remove this now.
The one case we still need to be careful of is shaded windows, in which
we do still unmap the client window. In the future, we might want to
show previews of shaded windows in the overview and Alt-Tab. In that
we'd also keep shaded windows mapped, and could remove all unmap logic,
but we'd need a more complex method of showing the shaded titlebar, such
as using a different actor.
At the same time, simplify the compositor interface by removing
meta_compositor_window_[un]mapped API, and instead adding/removing the
window on-demand.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-02 00:06:51 +00:00
|
|
|
else
|
2012-10-04 02:48:16 +00:00
|
|
|
{
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->surface)
|
|
|
|
{
|
|
|
|
const cairo_rectangle_int_t clip = { 0, 0, 1, 1 };
|
|
|
|
clutter_actor_queue_redraw_with_clip (CLUTTER_ACTOR (priv->surface), &clip);
|
|
|
|
priv->repaint_scheduled = TRUE;
|
|
|
|
}
|
2012-10-04 02:48:16 +00:00
|
|
|
}
|
|
|
|
}
|
2010-03-02 18:02:28 +00:00
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
gboolean
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_effect_in_progress (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
return (self->priv->minimize_in_progress ||
|
|
|
|
self->priv->maximize_in_progress ||
|
|
|
|
self->priv->unmaximize_in_progress ||
|
|
|
|
self->priv->map_in_progress ||
|
2009-06-28 19:06:58 +00:00
|
|
|
self->priv->destroy_in_progress);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
2010-03-02 18:02:28 +00:00
|
|
|
static gboolean
|
|
|
|
is_freeze_thaw_effect (gulong event)
|
|
|
|
{
|
|
|
|
switch (event)
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_DESTROY:
|
|
|
|
case META_PLUGIN_MAXIMIZE:
|
|
|
|
case META_PLUGIN_UNMAXIMIZE:
|
2010-03-02 18:02:28 +00:00
|
|
|
return TRUE;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
static gboolean
|
2010-10-18 17:27:14 +00:00
|
|
|
start_simple_effect (MetaWindowActor *self,
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
gulong event)
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaCompositor *compositor = priv->compositor;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
gint *counter = NULL;
|
2010-03-02 18:02:28 +00:00
|
|
|
gboolean use_freeze_thaw = FALSE;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
|
|
|
|
switch (event)
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_MINIMIZE:
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
counter = &priv->minimize_in_progress;
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_MAP:
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
counter = &priv->map_in_progress;
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_DESTROY:
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
counter = &priv->destroy_in_progress;
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_UNMAXIMIZE:
|
|
|
|
case META_PLUGIN_MAXIMIZE:
|
|
|
|
case META_PLUGIN_SWITCH_WORKSPACE:
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
g_assert_not_reached ();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
g_assert (counter);
|
|
|
|
|
2010-03-02 18:02:28 +00:00
|
|
|
use_freeze_thaw = is_freeze_thaw_effect (event);
|
|
|
|
|
|
|
|
if (use_freeze_thaw)
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_freeze (self);
|
2010-03-02 18:02:28 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
(*counter)++;
|
|
|
|
|
2014-03-18 21:31:22 +00:00
|
|
|
if (!meta_plugin_manager_event_simple (compositor->plugin_mgr, self, event))
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
{
|
|
|
|
(*counter)--;
|
2010-03-02 18:02:28 +00:00
|
|
|
if (use_freeze_thaw)
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_thaw (self);
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
return FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_after_effects (MetaWindowActor *self)
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
|
|
|
|
if (priv->needs_destroy)
|
|
|
|
{
|
|
|
|
clutter_actor_destroy (CLUTTER_ACTOR (self));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_sync_visibility (self);
|
2013-02-16 02:27:00 +00:00
|
|
|
meta_window_actor_sync_actor_geometry (self, FALSE);
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_effect_completed (MetaWindowActor *self,
|
|
|
|
gulong event)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
/* NB: Keep in mind that when effects get completed it possible
|
|
|
|
* that the corresponding MetaWindow may have be been destroyed.
|
|
|
|
* In this case priv->window will == NULL */
|
|
|
|
|
|
|
|
switch (event)
|
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_MINIMIZE:
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
priv->minimize_in_progress--;
|
|
|
|
if (priv->minimize_in_progress < 0)
|
|
|
|
{
|
|
|
|
g_warning ("Error in minimize accounting.");
|
|
|
|
priv->minimize_in_progress = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_MAP:
|
2009-06-26 19:33:20 +00:00
|
|
|
/*
|
|
|
|
* Make sure that the actor is at the correct place in case
|
|
|
|
* the plugin fscked.
|
|
|
|
*/
|
|
|
|
priv->map_in_progress--;
|
|
|
|
|
|
|
|
if (priv->map_in_progress < 0)
|
|
|
|
{
|
|
|
|
g_warning ("Error in map accounting.");
|
|
|
|
priv->map_in_progress = 0;
|
|
|
|
}
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_DESTROY:
|
2009-06-26 19:33:20 +00:00
|
|
|
priv->destroy_in_progress--;
|
|
|
|
|
|
|
|
if (priv->destroy_in_progress < 0)
|
|
|
|
{
|
|
|
|
g_warning ("Error in destroy accounting.");
|
|
|
|
priv->destroy_in_progress = 0;
|
|
|
|
}
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_UNMAXIMIZE:
|
2009-06-26 19:33:20 +00:00
|
|
|
priv->unmaximize_in_progress--;
|
|
|
|
if (priv->unmaximize_in_progress < 0)
|
|
|
|
{
|
|
|
|
g_warning ("Error in unmaximize accounting.");
|
|
|
|
priv->unmaximize_in_progress = 0;
|
|
|
|
}
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_MAXIMIZE:
|
2009-06-26 19:33:20 +00:00
|
|
|
priv->maximize_in_progress--;
|
|
|
|
if (priv->maximize_in_progress < 0)
|
|
|
|
{
|
|
|
|
g_warning ("Error in maximize accounting.");
|
|
|
|
priv->maximize_in_progress = 0;
|
|
|
|
}
|
|
|
|
break;
|
2010-10-18 17:27:14 +00:00
|
|
|
case META_PLUGIN_SWITCH_WORKSPACE:
|
2009-06-26 19:33:20 +00:00
|
|
|
g_assert_not_reached ();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2010-03-02 18:02:28 +00:00
|
|
|
if (is_freeze_thaw_effect (event))
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_thaw (self);
|
2010-03-02 18:02:28 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
if (!meta_window_actor_effect_in_progress (self))
|
|
|
|
meta_window_actor_after_effects (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
2011-08-27 09:43:09 +00:00
|
|
|
gboolean
|
|
|
|
meta_window_actor_should_unredirect (MetaWindowActor *self)
|
|
|
|
{
|
2011-10-17 23:52:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->surface)
|
|
|
|
return meta_surface_actor_should_unredirect (priv->surface);
|
|
|
|
else
|
|
|
|
return FALSE;
|
2011-08-27 09:43:09 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2013-12-06 22:36:09 +00:00
|
|
|
meta_window_actor_set_unredirected (MetaWindowActor *self,
|
|
|
|
gboolean unredirected)
|
2011-08-27 09:43:09 +00:00
|
|
|
{
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-02-25 00:22:56 +00:00
|
|
|
|
|
|
|
g_assert(priv->surface); /* because otherwise should_unredirect() is FALSE */
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
meta_surface_actor_set_unredirected (priv->surface, unredirected);
|
2011-08-27 09:43:09 +00:00
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_destroy (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaWindow *window = priv->window;
|
|
|
|
MetaCompositor *compositor = priv->compositor;
|
|
|
|
MetaWindowType window_type = meta_window_get_window_type (window);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
meta_window_set_compositor_private (window, NULL);
|
|
|
|
|
2014-02-02 10:37:25 +00:00
|
|
|
if (priv->send_frame_messages_timer != 0)
|
|
|
|
{
|
|
|
|
g_source_remove (priv->send_frame_messages_timer);
|
|
|
|
priv->send_frame_messages_timer = 0;
|
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
/*
|
|
|
|
* We remove the window from internal lookup hashes and thus any other
|
|
|
|
* unmap events etc fail
|
|
|
|
*/
|
2014-03-18 21:31:22 +00:00
|
|
|
compositor->windows = g_list_remove (compositor->windows, (gconstpointer) self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-09-30 16:35:12 +00:00
|
|
|
if (window_type == META_WINDOW_DROPDOWN_MENU ||
|
|
|
|
window_type == META_WINDOW_POPUP_MENU ||
|
|
|
|
window_type == META_WINDOW_TOOLTIP ||
|
|
|
|
window_type == META_WINDOW_NOTIFICATION ||
|
|
|
|
window_type == META_WINDOW_COMBO ||
|
|
|
|
window_type == META_WINDOW_DND ||
|
|
|
|
window_type == META_WINDOW_OVERRIDE_OTHER)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
/*
|
|
|
|
* No effects, just kill it.
|
|
|
|
*/
|
|
|
|
clutter_actor_destroy (CLUTTER_ACTOR (self));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
priv->needs_destroy = TRUE;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
if (!meta_window_actor_effect_in_progress (self))
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
clutter_actor_destroy (CLUTTER_ACTOR (self));
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2013-02-16 02:27:00 +00:00
|
|
|
meta_window_actor_sync_actor_geometry (MetaWindowActor *self,
|
|
|
|
gboolean did_placement)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
MetaRectangle window_rect;
|
|
|
|
|
2013-09-25 17:16:08 +00:00
|
|
|
meta_window_get_input_rect (priv->window, &window_rect);
|
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
/* When running as a Wayland compositor we catch size changes when new
|
|
|
|
* buffers are attached */
|
|
|
|
if (META_IS_SURFACE_ACTOR_X11 (priv->surface))
|
|
|
|
meta_surface_actor_x11_set_size (META_SURFACE_ACTOR_X11 (priv->surface),
|
|
|
|
window_rect.width, window_rect.height);
|
2013-09-25 17:16:08 +00:00
|
|
|
|
2013-02-16 02:27:00 +00:00
|
|
|
/* Normally we want freezing a window to also freeze its position; this allows
|
|
|
|
* windows to atomically move and resize together, either under app control,
|
|
|
|
* or because the user is resizing from the left/top. But on initial placement
|
|
|
|
* we need to assign a position, since immediately after the window
|
|
|
|
* is shown, the map effect will go into effect and prevent further geometry
|
|
|
|
* updates.
|
|
|
|
*/
|
|
|
|
if (is_frozen (self) && !did_placement)
|
|
|
|
return;
|
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
if (meta_window_actor_effect_in_progress (self))
|
2009-06-26 19:33:20 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
clutter_actor_set_position (CLUTTER_ACTOR (self),
|
2009-06-28 16:26:23 +00:00
|
|
|
window_rect.x, window_rect.y);
|
|
|
|
clutter_actor_set_size (CLUTTER_ACTOR (self),
|
|
|
|
window_rect.width, window_rect.height);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_show (MetaWindowActor *self,
|
|
|
|
MetaCompEffect effect)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaCompositor *compositor = priv->compositor;
|
|
|
|
gulong event = 0;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
g_return_if_fail (!priv->visible);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
self->priv->visible = TRUE;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
switch (effect)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
case META_COMP_EFFECT_CREATE:
|
2010-10-18 17:27:14 +00:00
|
|
|
event = META_PLUGIN_MAP;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
break;
|
|
|
|
case META_COMP_EFFECT_UNMINIMIZE:
|
2010-10-18 17:27:14 +00:00
|
|
|
/* FIXME: should have META_PLUGIN_UNMINIMIZE */
|
|
|
|
event = META_PLUGIN_MAP;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
break;
|
|
|
|
case META_COMP_EFFECT_NONE:
|
|
|
|
break;
|
|
|
|
case META_COMP_EFFECT_DESTROY:
|
|
|
|
case META_COMP_EFFECT_MINIMIZE:
|
|
|
|
g_assert_not_reached();
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
2014-03-18 21:31:22 +00:00
|
|
|
if (compositor->switch_workspace_in_progress ||
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
event == 0 ||
|
|
|
|
!start_simple_effect (self, event))
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2012-01-17 14:16:46 +00:00
|
|
|
clutter_actor_show (CLUTTER_ACTOR (self));
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_hide (MetaWindowActor *self,
|
|
|
|
MetaCompEffect effect)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaCompositor *compositor = priv->compositor;
|
|
|
|
gulong event = 0;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
g_return_if_fail (priv->visible);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
priv->visible = FALSE;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
/* If a plugin is animating a workspace transition, we have to
|
|
|
|
* hold off on hiding the window, and do it after the workspace
|
|
|
|
* switch completes
|
2009-06-26 19:33:20 +00:00
|
|
|
*/
|
2014-03-18 21:31:22 +00:00
|
|
|
if (compositor->switch_workspace_in_progress)
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
return;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
switch (effect)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
case META_COMP_EFFECT_DESTROY:
|
2010-10-18 17:27:14 +00:00
|
|
|
event = META_PLUGIN_DESTROY;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
break;
|
|
|
|
case META_COMP_EFFECT_MINIMIZE:
|
2010-10-18 17:27:14 +00:00
|
|
|
event = META_PLUGIN_MINIMIZE;
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
break;
|
|
|
|
case META_COMP_EFFECT_NONE:
|
|
|
|
break;
|
|
|
|
case META_COMP_EFFECT_UNMINIMIZE:
|
|
|
|
case META_COMP_EFFECT_CREATE:
|
|
|
|
g_assert_not_reached();
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
|
|
|
|
if (event == 0 ||
|
|
|
|
!start_simple_effect (self, event))
|
|
|
|
clutter_actor_hide (CLUTTER_ACTOR (self));
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_maximize (MetaWindowActor *self,
|
|
|
|
MetaRectangle *old_rect,
|
|
|
|
MetaRectangle *new_rect)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaCompositor *compositor = priv->compositor;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2009-06-28 16:26:23 +00:00
|
|
|
/* The window has already been resized (in order to compute new_rect),
|
|
|
|
* which by side effect caused the actor to be resized. Restore it to the
|
|
|
|
* old size and position */
|
|
|
|
clutter_actor_set_position (CLUTTER_ACTOR (self), old_rect->x, old_rect->y);
|
|
|
|
clutter_actor_set_size (CLUTTER_ACTOR (self), old_rect->width, old_rect->height);
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
self->priv->maximize_in_progress++;
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_freeze (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2014-03-18 21:31:22 +00:00
|
|
|
if (!meta_plugin_manager_event_maximize (compositor->plugin_mgr,
|
2010-10-18 17:27:14 +00:00
|
|
|
self,
|
|
|
|
META_PLUGIN_MAXIMIZE,
|
|
|
|
new_rect->x, new_rect->y,
|
|
|
|
new_rect->width, new_rect->height))
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
{
|
|
|
|
self->priv->maximize_in_progress--;
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_thaw (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_unmaximize (MetaWindowActor *self,
|
|
|
|
MetaRectangle *old_rect,
|
|
|
|
MetaRectangle *new_rect)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaCompositor *compositor = priv->compositor;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2009-06-28 16:26:23 +00:00
|
|
|
/* The window has already been resized (in order to compute new_rect),
|
|
|
|
* which by side effect caused the actor to be resized. Restore it to the
|
|
|
|
* old size and position */
|
|
|
|
clutter_actor_set_position (CLUTTER_ACTOR (self), old_rect->x, old_rect->y);
|
|
|
|
clutter_actor_set_size (CLUTTER_ACTOR (self), old_rect->width, old_rect->height);
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
self->priv->unmaximize_in_progress++;
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_freeze (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2014-03-18 21:31:22 +00:00
|
|
|
if (!meta_plugin_manager_event_maximize (compositor->plugin_mgr,
|
2010-10-18 17:27:14 +00:00
|
|
|
self,
|
|
|
|
META_PLUGIN_UNMAXIMIZE,
|
|
|
|
new_rect->x, new_rect->y,
|
|
|
|
new_rect->width, new_rect->height))
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
|
|
|
self->priv->unmaximize_in_progress--;
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_thaw (self);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActor *
|
|
|
|
meta_window_actor_new (MetaWindow *window)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaDisplay *display = meta_window_get_display (window);
|
|
|
|
MetaCompositor *compositor = display->compositor;
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActor *self;
|
|
|
|
MetaWindowActorPrivate *priv;
|
2012-12-27 13:04:12 +00:00
|
|
|
ClutterActor *window_group;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2010-10-18 17:27:14 +00:00
|
|
|
self = g_object_new (META_TYPE_WINDOW_ACTOR,
|
2013-12-06 05:59:20 +00:00
|
|
|
"meta-window", window,
|
2010-10-18 17:27:14 +00:00
|
|
|
NULL);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
priv = self->priv;
|
Always map the client and frame windows
Traditionally, WMs unmap windows when minimizing them, and map them
when restoring them or wanting to show them for other reasons, like
upon creation.
However, as metacity morphed into mutter, we optionally chose to keep
windows mapped for the lifetime of the window under the user option
"live-window-previews", which makes the code keep windows mapped so it
can show window preview for minimized windows in other places, like
Alt-Tab and Expose.
I removed this preference two years ago mechanically, by removing all
the if statements, but never went through and cleaned up the code so
that windows are simply mapped for the lifetime of the window -- the
"architecture" of the old code that maps and unmaps on show/hide was
still there.
Remove this now.
The one case we still need to be careful of is shaded windows, in which
we do still unmap the client window. Theoretically, we might want to
show previews of shaded windows in the overview and Alt-Tab, so we remove
the complex unmap tracking for this later.
2014-01-21 20:51:46 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
meta_window_actor_set_updates_frozen (self, meta_window_updates_are_frozen (priv->window));
|
2014-01-22 14:16:56 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
/* If a window doesn't start off with updates frozen, we should
|
|
|
|
* we should send a _NET_WM_FRAME_DRAWN immediately after the first drawn.
|
|
|
|
*/
|
|
|
|
if (priv->window->extended_sync_request_counter && !priv->updates_frozen)
|
|
|
|
meta_window_actor_queue_frame_drawn (self, FALSE);
|
2013-02-28 21:12:50 +00:00
|
|
|
|
2013-02-16 02:27:00 +00:00
|
|
|
meta_window_actor_sync_actor_geometry (self, priv->window->placed);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
/* Hang our compositor window state off the MetaWindow for fast retrieval */
|
|
|
|
meta_window_set_compositor_private (window, G_OBJECT (self));
|
|
|
|
|
2012-12-27 13:04:12 +00:00
|
|
|
if (window->layer == META_LAYER_OVERRIDE_REDIRECT)
|
2014-03-18 21:31:22 +00:00
|
|
|
window_group = compositor->top_window_group;
|
2012-12-27 13:04:12 +00:00
|
|
|
else
|
2014-03-18 21:31:22 +00:00
|
|
|
window_group = compositor->window_group;
|
2012-12-27 13:04:12 +00:00
|
|
|
|
2012-01-17 14:16:46 +00:00
|
|
|
clutter_actor_add_child (window_group, CLUTTER_ACTOR (self));
|
2012-12-27 13:04:12 +00:00
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
clutter_actor_hide (CLUTTER_ACTOR (self));
|
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
/* Initial position in the stack is arbitrary; stacking will be synced
|
|
|
|
* before we first paint.
|
2009-06-26 19:33:20 +00:00
|
|
|
*/
|
2014-03-18 21:31:22 +00:00
|
|
|
compositor->windows = g_list_append (compositor->windows, self);
|
2009-06-26 19:33:20 +00:00
|
|
|
|
|
|
|
return self;
|
|
|
|
}
|
|
|
|
|
2009-06-29 18:30:26 +00:00
|
|
|
#if 0
|
|
|
|
/* Print out a region; useful for debugging */
|
|
|
|
static void
|
2012-04-29 08:44:53 +00:00
|
|
|
print_region (cairo_region_t *region)
|
2009-06-29 18:30:26 +00:00
|
|
|
{
|
|
|
|
int n_rects;
|
|
|
|
int i;
|
|
|
|
|
2010-10-18 15:32:50 +00:00
|
|
|
n_rects = cairo_region_num_rectangles (region);
|
2009-06-29 18:30:26 +00:00
|
|
|
g_print ("[");
|
|
|
|
for (i = 0; i < n_rects; i++)
|
|
|
|
{
|
2010-10-18 15:32:50 +00:00
|
|
|
cairo_rectangle_int_t rect;
|
2011-07-18 20:41:31 +00:00
|
|
|
cairo_region_get_rectangle (region, i, &rect);
|
2009-06-29 18:30:26 +00:00
|
|
|
g_print ("+%d+%dx%dx%d ",
|
2010-10-18 15:32:50 +00:00
|
|
|
rect.x, rect.y, rect.width, rect.height);
|
2009-06-29 18:30:26 +00:00
|
|
|
}
|
|
|
|
g_print ("]\n");
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2012-04-29 08:44:53 +00:00
|
|
|
#if 0
|
|
|
|
/* Dump a region to a PNG file; useful for debugging */
|
|
|
|
static void
|
|
|
|
see_region (cairo_region_t *region,
|
|
|
|
int width,
|
|
|
|
int height,
|
|
|
|
char *filename)
|
|
|
|
{
|
|
|
|
cairo_surface_t *surface = cairo_image_surface_create (CAIRO_FORMAT_A8, width, height);
|
|
|
|
cairo_t *cr = cairo_create (surface);
|
|
|
|
|
|
|
|
gdk_cairo_region (cr, region);
|
|
|
|
cairo_fill (cr);
|
|
|
|
|
|
|
|
cairo_surface_write_to_png (surface, filename);
|
|
|
|
cairo_destroy (cr);
|
|
|
|
cairo_surface_destroy (surface);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2009-06-29 18:30:26 +00:00
|
|
|
/**
|
2013-08-27 14:45:15 +00:00
|
|
|
* meta_window_actor_set_clip_region_beneath:
|
2010-10-18 17:27:14 +00:00
|
|
|
* @self: a #MetaWindowActor
|
2013-08-27 14:45:15 +00:00
|
|
|
* @clip_region: the region of the screen that isn't completely
|
2009-06-29 18:30:26 +00:00
|
|
|
* obscured beneath the main window texture.
|
|
|
|
*
|
|
|
|
* Provides a hint as to what areas need to be drawn *beneath*
|
2013-08-27 14:45:15 +00:00
|
|
|
* the main window texture. This is the relevant clip region
|
2009-06-29 18:30:26 +00:00
|
|
|
* when drawing the shadow, properly accounting for areas of the
|
|
|
|
* shadow hid by the window itself. This will be set before painting
|
|
|
|
* then unset afterwards.
|
|
|
|
*/
|
2013-11-21 20:13:18 +00:00
|
|
|
static void
|
2013-08-27 14:45:15 +00:00
|
|
|
meta_window_actor_set_clip_region_beneath (MetaWindowActor *self,
|
|
|
|
cairo_region_t *beneath_region)
|
2009-06-29 18:30:26 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2010-11-11 22:18:02 +00:00
|
|
|
gboolean appears_focused = meta_window_appears_focused (priv->window);
|
2009-06-29 18:30:26 +00:00
|
|
|
|
2010-11-11 22:18:02 +00:00
|
|
|
if (appears_focused ? priv->focused_shadow : priv->unfocused_shadow)
|
2009-06-29 18:30:26 +00:00
|
|
|
{
|
2013-01-15 02:40:46 +00:00
|
|
|
g_clear_pointer (&priv->shadow_clip, cairo_region_destroy);
|
2011-03-22 19:36:12 +00:00
|
|
|
|
2014-02-05 18:20:18 +00:00
|
|
|
if (beneath_region)
|
2011-03-22 19:36:12 +00:00
|
|
|
{
|
2014-02-05 18:20:18 +00:00
|
|
|
priv->shadow_clip = cairo_region_copy (beneath_region);
|
|
|
|
|
|
|
|
if (clip_shadow_under_window (self))
|
|
|
|
{
|
|
|
|
cairo_region_t *frame_bounds = meta_window_get_frame_bounds (priv->window);
|
|
|
|
cairo_region_subtract (priv->shadow_clip, frame_bounds);
|
|
|
|
}
|
2011-03-22 19:36:12 +00:00
|
|
|
}
|
2014-02-05 18:20:18 +00:00
|
|
|
else
|
|
|
|
priv->shadow_clip = NULL;
|
2009-06-29 18:30:26 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-11-21 20:25:08 +00:00
|
|
|
static void
|
|
|
|
meta_window_actor_cull_out (MetaCullable *cullable,
|
|
|
|
cairo_region_t *unobscured_region,
|
|
|
|
cairo_region_t *clip_region)
|
2013-11-21 20:13:18 +00:00
|
|
|
{
|
2013-11-21 20:25:08 +00:00
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (cullable);
|
2014-01-22 14:16:56 +00:00
|
|
|
|
2014-02-26 13:50:14 +00:00
|
|
|
meta_cullable_cull_out_children (cullable, unobscured_region, clip_region);
|
2013-11-21 20:13:18 +00:00
|
|
|
meta_window_actor_set_clip_region_beneath (self, clip_region);
|
|
|
|
}
|
|
|
|
|
2013-11-21 20:25:08 +00:00
|
|
|
static void
|
|
|
|
meta_window_actor_reset_culling (MetaCullable *cullable)
|
2009-06-29 18:30:26 +00:00
|
|
|
{
|
2013-11-21 20:25:08 +00:00
|
|
|
MetaWindowActor *self = META_WINDOW_ACTOR (cullable);
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-06-29 18:30:26 +00:00
|
|
|
|
2013-01-15 02:40:46 +00:00
|
|
|
g_clear_pointer (&priv->shadow_clip, cairo_region_destroy);
|
2013-11-21 21:25:20 +00:00
|
|
|
|
|
|
|
meta_cullable_reset_culling_children (cullable);
|
2009-06-29 18:30:26 +00:00
|
|
|
}
|
|
|
|
|
2013-11-21 20:25:08 +00:00
|
|
|
static void
|
|
|
|
cullable_iface_init (MetaCullableInterface *iface)
|
|
|
|
{
|
|
|
|
iface->cull_out = meta_window_actor_cull_out;
|
|
|
|
iface->reset_culling = meta_window_actor_reset_culling;
|
|
|
|
}
|
|
|
|
|
2010-10-18 19:34:08 +00:00
|
|
|
static void
|
|
|
|
check_needs_shadow (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
MetaShadow *old_shadow = NULL;
|
2010-11-11 21:24:43 +00:00
|
|
|
MetaShadow **shadow_location;
|
|
|
|
gboolean recompute_shadow;
|
2010-10-18 19:34:08 +00:00
|
|
|
gboolean should_have_shadow;
|
2010-11-11 21:24:43 +00:00
|
|
|
gboolean appears_focused;
|
2010-10-18 19:34:08 +00:00
|
|
|
|
|
|
|
/* Calling meta_window_actor_has_shadow() here at every pre-paint is cheap
|
|
|
|
* and avoids the need to explicitly handle window type changes, which
|
|
|
|
* we would do if tried to keep track of when we might be adding or removing
|
|
|
|
* a shadow more explicitly. We only keep track of changes to the *shape* of
|
|
|
|
* the shadow with priv->recompute_shadow.
|
|
|
|
*/
|
|
|
|
|
|
|
|
should_have_shadow = meta_window_actor_has_shadow (self);
|
2010-11-11 21:24:43 +00:00
|
|
|
appears_focused = meta_window_appears_focused (priv->window);
|
|
|
|
|
|
|
|
if (appears_focused)
|
|
|
|
{
|
|
|
|
recompute_shadow = priv->recompute_focused_shadow;
|
|
|
|
priv->recompute_focused_shadow = FALSE;
|
|
|
|
shadow_location = &priv->focused_shadow;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
recompute_shadow = priv->recompute_unfocused_shadow;
|
|
|
|
priv->recompute_unfocused_shadow = FALSE;
|
|
|
|
shadow_location = &priv->unfocused_shadow;
|
|
|
|
}
|
2010-10-18 19:34:08 +00:00
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
if (!should_have_shadow || recompute_shadow)
|
2010-10-18 19:34:08 +00:00
|
|
|
{
|
2010-11-11 21:24:43 +00:00
|
|
|
if (*shadow_location != NULL)
|
|
|
|
{
|
|
|
|
old_shadow = *shadow_location;
|
|
|
|
*shadow_location = NULL;
|
|
|
|
}
|
2010-10-18 19:34:08 +00:00
|
|
|
}
|
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
if (*shadow_location == NULL && should_have_shadow)
|
2010-10-18 19:34:08 +00:00
|
|
|
{
|
|
|
|
if (priv->shadow_shape == NULL)
|
2013-01-15 02:47:46 +00:00
|
|
|
priv->shadow_shape = meta_window_shape_new (priv->shape_region);
|
2013-01-15 02:47:46 +00:00
|
|
|
|
2013-01-15 02:47:46 +00:00
|
|
|
MetaShadowFactory *factory = meta_shadow_factory_get_default ();
|
|
|
|
const char *shadow_class = meta_window_actor_get_shadow_class (self);
|
|
|
|
cairo_rectangle_int_t shape_bounds;
|
|
|
|
|
|
|
|
meta_window_actor_get_shape_bounds (self, &shape_bounds);
|
|
|
|
*shadow_location = meta_shadow_factory_get_shadow (factory,
|
|
|
|
priv->shadow_shape,
|
|
|
|
shape_bounds.width, shape_bounds.height,
|
|
|
|
shadow_class, appears_focused);
|
2010-10-18 19:34:08 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if (old_shadow != NULL)
|
|
|
|
meta_shadow_unref (old_shadow);
|
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
void
|
2012-01-07 22:21:32 +00:00
|
|
|
meta_window_actor_process_x11_damage (MetaWindowActor *self,
|
|
|
|
XDamageNotifyEvent *event)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-01-22 14:16:56 +00:00
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->surface)
|
|
|
|
meta_surface_actor_process_damage (priv->surface,
|
|
|
|
event->area.x,
|
|
|
|
event->area.y,
|
|
|
|
event->area.width,
|
|
|
|
event->area.height);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_sync_visibility (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
if (CLUTTER_ACTOR_IS_VISIBLE (self) != priv->visible)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
Simplify relationship between mapping and visibility
Previously, changes to the visibility of a window could be indicated
by meta_compositor_map_window(), meta_compositor_unminimize_window(),
meta_compositor_set_window_hidden(), etc, with the exact behavior
depending on the 'live_hidden_windows' preference.
Simplify this so that visibility is controlled by:
meta_compositor_show_window()
meta_compositor_hide_window()
With an 'effect' parameter provided to indicate the appropriate
effect (CREATE/UNMINIMIZE/MINIMIZE/DESTROY/NONE.)
The map state of the window is signalled separately by:
meta_compositor_map_window()
meta_compositor_unmap_window()
And is used only to control resource handling.
Other changes:
* The desired effect on show/hide is explicitly stored in
MetaWindow, avoiding the need for the was_minimized flag.
At idle, once we calculate the window state, we pass the
effect to the compositor if it matches the new window
state, and then clear the effect to start over for future
map state changes.
* meta_compositor_switch_workspace() is called before any windows
are hidden or shown, allowing the compositor to avoid hiding
or showing an effect for windows involved in the switch.
http://bugzilla.gnome.org/show_bug.cgi?id=582341
* Handling of post-effect cleanups for MutterWindow are
simplified - instead of trying to do different things based
on the individual needs of different effects, we just wait until
all effects complete and sync the window state to what it
should be.
* On unmap, once we destroy the pixmap, we tell ClutterX11Pixmap
that we've done so, so it can clean up and unbind. (The
unbinding doesn't seem to be working properly because of
ClutterGLXPixmap or video driver issues.)
http://bugzilla.gnome.org/show_bug.cgi?id=587251
2009-06-28 21:10:40 +00:00
|
|
|
if (priv->visible)
|
|
|
|
clutter_actor_show (CLUTTER_ACTOR (self));
|
|
|
|
else
|
|
|
|
clutter_actor_hide (CLUTTER_ACTOR (self));
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-04-29 11:10:15 +00:00
|
|
|
static cairo_region_t *
|
2012-04-27 04:15:30 +00:00
|
|
|
scan_visible_region (guchar *mask_data,
|
|
|
|
int stride,
|
2012-04-29 11:10:15 +00:00
|
|
|
cairo_region_t *scan_area)
|
2012-04-27 04:15:30 +00:00
|
|
|
{
|
2012-04-29 11:10:15 +00:00
|
|
|
int i, n_rects = cairo_region_num_rectangles (scan_area);
|
|
|
|
MetaRegionBuilder builder;
|
|
|
|
|
|
|
|
meta_region_builder_init (&builder);
|
2012-04-27 04:15:30 +00:00
|
|
|
|
|
|
|
for (i = 0; i < n_rects; i++)
|
|
|
|
{
|
|
|
|
int x, y;
|
|
|
|
cairo_rectangle_int_t rect;
|
|
|
|
|
|
|
|
cairo_region_get_rectangle (scan_area, i, &rect);
|
|
|
|
|
|
|
|
for (y = rect.y; y < (rect.y + rect.height); y++)
|
|
|
|
{
|
|
|
|
for (x = rect.x; x < (rect.x + rect.width); x++)
|
|
|
|
{
|
2013-01-16 15:14:40 +00:00
|
|
|
int x2 = x;
|
|
|
|
while (mask_data[y * stride + x2] == 255 && x2 < (rect.x + rect.width))
|
|
|
|
x2++;
|
2012-04-27 04:15:30 +00:00
|
|
|
|
2013-01-16 15:16:58 +00:00
|
|
|
if (x2 > x)
|
2012-04-27 04:15:30 +00:00
|
|
|
{
|
2013-01-16 15:14:40 +00:00
|
|
|
meta_region_builder_add_rectangle (&builder, x, y, x2 - x, 1);
|
|
|
|
x = x2;
|
2012-04-27 04:15:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2012-04-29 11:10:15 +00:00
|
|
|
|
|
|
|
return meta_region_builder_finish (&builder);
|
2012-04-27 04:15:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
build_and_scan_frame_mask (MetaWindowActor *self,
|
|
|
|
cairo_rectangle_int_t *client_area,
|
|
|
|
cairo_region_t *shape_region)
|
2012-04-27 04:14:42 +00:00
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
guchar *mask_data;
|
|
|
|
guint tex_width, tex_height;
|
2013-10-13 11:47:53 +00:00
|
|
|
MetaShapedTexture *stex;
|
2013-02-20 00:34:47 +00:00
|
|
|
CoglTexture *paint_tex, *mask_texture;
|
2012-04-27 04:14:42 +00:00
|
|
|
int stride;
|
2012-05-14 18:35:16 +00:00
|
|
|
cairo_t *cr;
|
|
|
|
cairo_surface_t *surface;
|
2012-04-27 04:14:42 +00:00
|
|
|
|
2013-10-13 11:47:53 +00:00
|
|
|
stex = meta_surface_actor_get_texture (priv->surface);
|
|
|
|
g_return_if_fail (stex);
|
|
|
|
|
|
|
|
meta_shaped_texture_set_mask_texture (stex, NULL);
|
|
|
|
|
|
|
|
paint_tex = meta_shaped_texture_get_texture (stex);
|
2013-02-20 00:34:47 +00:00
|
|
|
if (paint_tex == NULL)
|
2012-04-27 04:14:42 +00:00
|
|
|
return;
|
|
|
|
|
|
|
|
tex_width = cogl_texture_get_width (paint_tex);
|
|
|
|
tex_height = cogl_texture_get_height (paint_tex);
|
|
|
|
|
|
|
|
stride = cairo_format_stride_for_width (CAIRO_FORMAT_A8, tex_width);
|
|
|
|
|
|
|
|
/* Create data for an empty image */
|
|
|
|
mask_data = g_malloc0 (stride * tex_height);
|
|
|
|
|
2012-05-14 18:35:16 +00:00
|
|
|
surface = cairo_image_surface_create_for_data (mask_data,
|
|
|
|
CAIRO_FORMAT_A8,
|
|
|
|
tex_width,
|
|
|
|
tex_height,
|
|
|
|
stride);
|
|
|
|
cr = cairo_create (surface);
|
2012-04-27 04:14:42 +00:00
|
|
|
|
2012-05-14 18:35:16 +00:00
|
|
|
gdk_cairo_region (cr, shape_region);
|
|
|
|
cairo_fill (cr);
|
|
|
|
|
2012-04-27 04:15:30 +00:00
|
|
|
if (priv->window->frame != NULL)
|
|
|
|
{
|
2012-04-29 11:10:15 +00:00
|
|
|
cairo_region_t *frame_paint_region, *scanned_region;
|
2012-04-27 04:15:30 +00:00
|
|
|
cairo_rectangle_int_t rect = { 0, 0, tex_width, tex_height };
|
|
|
|
|
|
|
|
/* Make sure we don't paint the frame over the client window. */
|
|
|
|
frame_paint_region = cairo_region_create_rectangle (&rect);
|
|
|
|
cairo_region_subtract_rectangle (frame_paint_region, client_area);
|
|
|
|
|
|
|
|
gdk_cairo_region (cr, frame_paint_region);
|
|
|
|
cairo_clip (cr);
|
|
|
|
|
2013-04-12 17:00:15 +00:00
|
|
|
meta_frame_get_mask (priv->window->frame, cr);
|
2012-04-27 04:15:30 +00:00
|
|
|
|
|
|
|
cairo_surface_flush (surface);
|
2012-04-29 11:10:15 +00:00
|
|
|
scanned_region = scan_visible_region (mask_data, stride, frame_paint_region);
|
|
|
|
cairo_region_union (shape_region, scanned_region);
|
|
|
|
cairo_region_destroy (scanned_region);
|
2012-08-25 07:31:38 +00:00
|
|
|
cairo_region_destroy (frame_paint_region);
|
2012-04-27 04:15:30 +00:00
|
|
|
}
|
|
|
|
|
2012-05-14 18:35:16 +00:00
|
|
|
cairo_destroy (cr);
|
|
|
|
cairo_surface_destroy (surface);
|
2012-04-27 04:14:42 +00:00
|
|
|
|
|
|
|
if (meta_texture_rectangle_check (paint_tex))
|
|
|
|
{
|
2014-01-13 18:24:30 +00:00
|
|
|
ClutterBackend *backend = clutter_get_default_backend ();
|
|
|
|
CoglContext *context = clutter_backend_get_cogl_context (backend);
|
|
|
|
|
|
|
|
mask_texture = COGL_TEXTURE (cogl_texture_rectangle_new_with_size (context, tex_width, tex_height));
|
|
|
|
cogl_texture_set_components (mask_texture, COGL_TEXTURE_COMPONENTS_A);
|
|
|
|
cogl_texture_set_region (mask_texture,
|
|
|
|
0, 0, /* src_x/y */
|
|
|
|
0, 0, /* dst_x/y */
|
|
|
|
tex_width, tex_height, /* dst_width/height */
|
|
|
|
tex_width, tex_height, /* width/height */
|
|
|
|
COGL_PIXEL_FORMAT_A_8,
|
|
|
|
stride, mask_data);
|
2012-04-27 04:14:42 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Note: we don't allow slicing for this texture because we
|
|
|
|
* need to use it with multi-texturing which doesn't support
|
|
|
|
* sliced textures */
|
|
|
|
mask_texture = cogl_texture_new_from_data (tex_width, tex_height,
|
|
|
|
COGL_TEXTURE_NO_SLICING,
|
|
|
|
COGL_PIXEL_FORMAT_A_8,
|
|
|
|
COGL_PIXEL_FORMAT_ANY,
|
|
|
|
stride,
|
|
|
|
mask_data);
|
|
|
|
}
|
|
|
|
|
2013-10-13 11:47:53 +00:00
|
|
|
meta_shaped_texture_set_mask_texture (stex, mask_texture);
|
2014-01-10 11:26:57 +00:00
|
|
|
if (mask_texture)
|
|
|
|
cogl_object_unref (mask_texture);
|
2012-04-27 04:14:42 +00:00
|
|
|
|
|
|
|
g_free (mask_data);
|
|
|
|
}
|
|
|
|
|
2014-02-27 01:45:38 +00:00
|
|
|
static void
|
2014-02-27 00:35:41 +00:00
|
|
|
meta_window_actor_update_shape_region (MetaWindowActor *self)
|
2012-01-19 01:20:02 +00:00
|
|
|
{
|
2013-08-24 02:20:49 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
cairo_region_t *region = NULL;
|
2014-02-27 00:35:41 +00:00
|
|
|
cairo_rectangle_int_t client_area;
|
|
|
|
|
|
|
|
meta_window_get_client_area_rect (priv->window, &client_area);
|
2012-01-19 01:20:02 +00:00
|
|
|
|
2013-08-24 02:20:49 +00:00
|
|
|
if (priv->window->frame != NULL && priv->window->shape_region != NULL)
|
|
|
|
{
|
|
|
|
region = cairo_region_copy (priv->window->shape_region);
|
2014-02-27 00:35:41 +00:00
|
|
|
cairo_region_translate (region, client_area.x, client_area.y);
|
2013-08-24 02:20:49 +00:00
|
|
|
}
|
|
|
|
else if (priv->window->shape_region != NULL)
|
2012-01-19 01:20:02 +00:00
|
|
|
{
|
2013-08-24 02:20:49 +00:00
|
|
|
region = cairo_region_reference (priv->window->shape_region);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* If we don't have a shape on the server, that means that
|
|
|
|
* we have an implicit shape of one rectangle covering the
|
|
|
|
* entire window. */
|
2014-02-27 00:35:41 +00:00
|
|
|
region = cairo_region_create_rectangle (&client_area);
|
2012-01-19 01:20:02 +00:00
|
|
|
}
|
|
|
|
|
2013-08-24 02:20:49 +00:00
|
|
|
if ((priv->window->shape_region != NULL) || (priv->window->frame != NULL))
|
2014-02-27 00:35:41 +00:00
|
|
|
build_and_scan_frame_mask (self, &client_area, region);
|
2012-01-19 01:20:02 +00:00
|
|
|
|
2013-08-24 02:20:49 +00:00
|
|
|
g_clear_pointer (&priv->shape_region, cairo_region_destroy);
|
|
|
|
priv->shape_region = region;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2013-08-28 15:11:04 +00:00
|
|
|
g_clear_pointer (&priv->shadow_shape, meta_window_shape_unref);
|
2013-02-15 20:53:04 +00:00
|
|
|
|
2013-08-24 02:20:49 +00:00
|
|
|
meta_window_actor_invalidate_shadow (self);
|
|
|
|
}
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2014-02-27 01:45:38 +00:00
|
|
|
static void
|
2014-02-27 00:35:41 +00:00
|
|
|
meta_window_actor_update_input_region (MetaWindowActor *self)
|
2013-08-24 02:20:49 +00:00
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-03-31 00:11:47 +00:00
|
|
|
MetaWindow *window = priv->window;
|
|
|
|
cairo_region_t *region;
|
2014-02-27 00:35:41 +00:00
|
|
|
|
2014-03-31 00:11:47 +00:00
|
|
|
if (window->shape_region && window->input_region)
|
2013-01-15 02:52:20 +00:00
|
|
|
{
|
2014-03-31 00:11:47 +00:00
|
|
|
region = cairo_region_copy (window->shape_region);
|
|
|
|
cairo_region_intersect (region, window->input_region);
|
2013-01-15 02:52:20 +00:00
|
|
|
}
|
2014-03-31 00:11:47 +00:00
|
|
|
else if (window->shape_region)
|
|
|
|
region = cairo_region_reference (window->shape_region);
|
|
|
|
else if (window->input_region)
|
|
|
|
region = cairo_region_reference (window->input_region);
|
2013-01-15 02:52:20 +00:00
|
|
|
else
|
2014-03-31 00:11:47 +00:00
|
|
|
region = NULL;
|
2009-06-28 16:26:23 +00:00
|
|
|
|
2013-11-21 22:45:05 +00:00
|
|
|
meta_surface_actor_set_input_region (priv->surface, region);
|
2013-08-24 02:20:49 +00:00
|
|
|
cairo_region_destroy (region);
|
|
|
|
}
|
|
|
|
|
2014-02-27 01:45:38 +00:00
|
|
|
static void
|
2013-08-24 02:20:49 +00:00
|
|
|
meta_window_actor_update_opaque_region (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2013-11-21 21:25:20 +00:00
|
|
|
cairo_region_t *opaque_region;
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
gboolean argb32 = is_argb32 (self);
|
2013-10-13 11:47:53 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
if (argb32 && priv->window->opaque_region != NULL)
|
2013-01-15 01:45:31 +00:00
|
|
|
{
|
2014-02-27 00:38:11 +00:00
|
|
|
cairo_rectangle_int_t client_area;
|
2013-08-24 02:20:49 +00:00
|
|
|
|
2014-02-27 00:38:11 +00:00
|
|
|
meta_window_get_client_area_rect (priv->window, &client_area);
|
2013-08-24 02:20:49 +00:00
|
|
|
|
2013-01-15 01:45:31 +00:00
|
|
|
/* The opaque region is defined to be a part of the
|
|
|
|
* window which ARGB32 will always paint with opaque
|
|
|
|
* pixels. For these regions, we want to avoid painting
|
|
|
|
* windows and shadows beneath them.
|
|
|
|
*
|
|
|
|
* If the client gives bad coordinates where it does not
|
|
|
|
* fully paint, the behavior is defined by the specification
|
|
|
|
* to be undefined, and considered a client bug. In mutter's
|
|
|
|
* case, graphical glitches will occur.
|
|
|
|
*/
|
2013-11-21 21:25:20 +00:00
|
|
|
opaque_region = cairo_region_copy (priv->window->opaque_region);
|
2014-02-27 00:38:11 +00:00
|
|
|
cairo_region_translate (opaque_region, client_area.x, client_area.y);
|
2013-11-21 21:25:20 +00:00
|
|
|
cairo_region_intersect (opaque_region, priv->shape_region);
|
2013-01-15 01:45:31 +00:00
|
|
|
}
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
else if (argb32)
|
2013-11-21 21:25:20 +00:00
|
|
|
opaque_region = NULL;
|
2013-01-15 01:45:31 +00:00
|
|
|
else
|
2013-11-21 21:25:20 +00:00
|
|
|
opaque_region = cairo_region_reference (priv->shape_region);
|
2013-08-27 20:17:34 +00:00
|
|
|
|
2013-11-21 22:45:05 +00:00
|
|
|
meta_surface_actor_set_opaque_region (priv->surface, opaque_region);
|
2013-11-21 21:25:20 +00:00
|
|
|
cairo_region_destroy (opaque_region);
|
2012-01-19 01:20:02 +00:00
|
|
|
}
|
|
|
|
|
2014-02-27 01:52:44 +00:00
|
|
|
static void
|
|
|
|
check_needs_reshape (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
|
|
|
if (!priv->needs_reshape)
|
|
|
|
return;
|
|
|
|
|
|
|
|
meta_window_actor_update_shape_region (self);
|
|
|
|
|
|
|
|
if (priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11)
|
|
|
|
{
|
|
|
|
meta_window_actor_update_input_region (self);
|
|
|
|
meta_window_actor_update_opaque_region (self);
|
|
|
|
}
|
|
|
|
|
|
|
|
priv->needs_reshape = FALSE;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
meta_window_actor_update_shape (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
|
|
|
priv->needs_reshape = TRUE;
|
|
|
|
|
|
|
|
if (is_frozen (self))
|
|
|
|
return;
|
|
|
|
|
|
|
|
clutter_actor_queue_redraw (CLUTTER_ACTOR (priv->surface));
|
|
|
|
}
|
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
static void
|
|
|
|
meta_window_actor_handle_updates (MetaWindowActor *self)
|
2009-06-28 16:26:23 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2010-05-13 20:43:30 +00:00
|
|
|
|
2010-03-02 18:02:28 +00:00
|
|
|
if (is_frozen (self))
|
|
|
|
{
|
|
|
|
/* The window is frozen due to a pending animation: we'll wait until
|
|
|
|
* the animation finishes to reshape and repair the window */
|
|
|
|
return;
|
|
|
|
}
|
2009-06-28 16:26:23 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
if (meta_surface_actor_is_unredirected (priv->surface))
|
|
|
|
return;
|
2011-09-14 15:27:54 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
meta_surface_actor_pre_paint (priv->surface);
|
2014-01-22 14:16:56 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
if (!meta_surface_actor_is_visible (priv->surface))
|
|
|
|
return;
|
2010-05-13 20:43:30 +00:00
|
|
|
|
2014-02-27 01:52:44 +00:00
|
|
|
check_needs_reshape (self);
|
2010-10-18 19:34:08 +00:00
|
|
|
check_needs_shadow (self);
|
2011-06-13 22:09:59 +00:00
|
|
|
}
|
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
void
|
|
|
|
meta_window_actor_pre_paint (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
GList *l;
|
|
|
|
|
|
|
|
meta_window_actor_handle_updates (self);
|
|
|
|
|
|
|
|
for (l = priv->frames; l != NULL; l = l->next)
|
|
|
|
{
|
|
|
|
FrameData *frame = l->data;
|
|
|
|
|
|
|
|
if (frame->frame_counter == 0)
|
|
|
|
{
|
|
|
|
CoglOnscreen *onscreen = COGL_ONSCREEN (cogl_get_draw_framebuffer());
|
|
|
|
frame->frame_counter = cogl_onscreen_get_frame_counter (onscreen);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
static void
|
|
|
|
do_send_frame_drawn (MetaWindowActor *self, FrameData *frame)
|
2011-06-13 22:09:59 +00:00
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaDisplay *display = meta_window_get_display (priv->window);
|
2013-08-17 17:11:12 +00:00
|
|
|
Display *xdisplay = meta_display_get_xdisplay (display);
|
2011-06-13 22:09:59 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
XClientMessageEvent ev = { 0, };
|
2013-02-14 18:40:55 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
frame->frame_drawn_time = meta_compositor_monotonic_time_to_server_time (display,
|
|
|
|
g_get_monotonic_time ());
|
|
|
|
priv->frame_drawn_time = frame->frame_drawn_time;
|
2011-06-13 22:09:59 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
ev.type = ClientMessage;
|
|
|
|
ev.window = meta_window_get_xwindow (priv->window);
|
|
|
|
ev.message_type = display->atom__NET_WM_FRAME_DRAWN;
|
|
|
|
ev.format = 32;
|
|
|
|
ev.data.l[0] = frame->sync_request_serial & G_GUINT64_CONSTANT(0xffffffff);
|
|
|
|
ev.data.l[1] = frame->sync_request_serial >> 32;
|
|
|
|
ev.data.l[2] = frame->frame_drawn_time & G_GUINT64_CONSTANT(0xffffffff);
|
|
|
|
ev.data.l[3] = frame->frame_drawn_time >> 32;
|
2012-11-12 19:11:08 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
meta_error_trap_push (display);
|
|
|
|
XSendEvent (xdisplay, ev.window, False, 0, (XEvent*) &ev);
|
|
|
|
XFlush (xdisplay);
|
|
|
|
meta_error_trap_pop (display);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
meta_window_actor_post_paint (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2012-11-12 19:11:08 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
priv->repaint_scheduled = FALSE;
|
2011-06-13 22:09:59 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
/* This window had damage, but wasn't actually redrawn because
|
|
|
|
* it is obscured. So we should wait until timer expiration
|
|
|
|
* before sending _NET_WM_FRAME_* messages.
|
|
|
|
*/
|
|
|
|
if (priv->send_frame_messages_timer != 0)
|
|
|
|
return;
|
2011-06-13 22:09:59 +00:00
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
if (priv->needs_frame_drawn)
|
|
|
|
{
|
|
|
|
do_send_frame_drawn (self, priv->frames->data);
|
2012-11-12 19:11:08 +00:00
|
|
|
priv->needs_frame_drawn = FALSE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
2013-08-17 17:11:12 +00:00
|
|
|
do_send_frame_timings (MetaWindowActor *self,
|
|
|
|
FrameData *frame,
|
|
|
|
gint refresh_interval,
|
|
|
|
gint64 presentation_time)
|
2012-11-12 19:11:08 +00:00
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2014-03-18 21:31:22 +00:00
|
|
|
MetaDisplay *display = meta_window_get_display (priv->window);
|
2012-11-12 19:11:08 +00:00
|
|
|
Display *xdisplay = meta_display_get_xdisplay (display);
|
|
|
|
|
|
|
|
XClientMessageEvent ev = { 0, };
|
|
|
|
|
|
|
|
ev.type = ClientMessage;
|
|
|
|
ev.window = meta_window_get_xwindow (priv->window);
|
|
|
|
ev.message_type = display->atom__NET_WM_FRAME_TIMINGS;
|
|
|
|
ev.format = 32;
|
|
|
|
ev.data.l[0] = frame->sync_request_serial & G_GUINT64_CONSTANT(0xffffffff);
|
|
|
|
ev.data.l[1] = frame->sync_request_serial >> 32;
|
|
|
|
|
|
|
|
if (presentation_time != 0)
|
|
|
|
{
|
|
|
|
gint64 presentation_time_server = meta_compositor_monotonic_time_to_server_time (display,
|
|
|
|
presentation_time);
|
|
|
|
gint64 presentation_time_offset = presentation_time_server - frame->frame_drawn_time;
|
|
|
|
if (presentation_time_offset == 0)
|
|
|
|
presentation_time_offset = 1;
|
|
|
|
|
|
|
|
if ((gint32)presentation_time_offset == presentation_time_offset)
|
|
|
|
ev.data.l[2] = presentation_time_offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
ev.data.l[3] = refresh_interval;
|
|
|
|
ev.data.l[4] = 1000 * META_SYNC_DELAY;
|
|
|
|
|
|
|
|
meta_error_trap_push (display);
|
|
|
|
XSendEvent (xdisplay, ev.window, False, 0, (XEvent*) &ev);
|
|
|
|
XFlush (xdisplay);
|
|
|
|
meta_error_trap_pop (display);
|
|
|
|
}
|
|
|
|
|
2013-08-17 17:11:12 +00:00
|
|
|
static void
|
|
|
|
send_frame_timings (MetaWindowActor *self,
|
|
|
|
FrameData *frame,
|
|
|
|
CoglFrameInfo *frame_info,
|
|
|
|
gint64 presentation_time)
|
|
|
|
{
|
|
|
|
float refresh_rate;
|
|
|
|
int refresh_interval;
|
|
|
|
|
|
|
|
refresh_rate = cogl_frame_info_get_refresh_rate (frame_info);
|
|
|
|
/* 0.0 is a flag for not known, but sanity-check against other odd numbers */
|
|
|
|
if (refresh_rate >= 1.0)
|
|
|
|
refresh_interval = (int) (0.5 + 1000000 / refresh_rate);
|
|
|
|
else
|
|
|
|
refresh_interval = 0;
|
|
|
|
|
|
|
|
do_send_frame_timings (self, frame, refresh_interval, presentation_time);
|
|
|
|
}
|
|
|
|
|
2012-11-12 19:11:08 +00:00
|
|
|
void
|
|
|
|
meta_window_actor_frame_complete (MetaWindowActor *self,
|
|
|
|
CoglFrameInfo *frame_info,
|
|
|
|
gint64 presentation_time)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
GList *l;
|
|
|
|
|
|
|
|
for (l = priv->frames; l;)
|
|
|
|
{
|
|
|
|
GList *l_next = l->next;
|
|
|
|
FrameData *frame = l->data;
|
|
|
|
|
|
|
|
if (frame->frame_counter == cogl_frame_info_get_frame_counter (frame_info))
|
|
|
|
{
|
|
|
|
if (frame->frame_drawn_time != 0)
|
|
|
|
{
|
|
|
|
priv->frames = g_list_delete_link (priv->frames, l);
|
|
|
|
send_frame_timings (self, frame, frame_info, presentation_time);
|
|
|
|
frame_data_free (frame);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
l = l_next;
|
2011-06-13 22:09:59 +00:00
|
|
|
}
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
void
|
|
|
|
meta_window_actor_invalidate_shadow (MetaWindowActor *self)
|
|
|
|
{
|
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
|
|
|
|
|
|
|
priv->recompute_focused_shadow = TRUE;
|
|
|
|
priv->recompute_unfocused_shadow = TRUE;
|
2013-02-15 20:53:04 +00:00
|
|
|
|
|
|
|
if (is_frozen (self))
|
|
|
|
return;
|
|
|
|
|
2010-11-11 21:24:43 +00:00
|
|
|
clutter_actor_queue_redraw (CLUTTER_ACTOR (self));
|
|
|
|
}
|
|
|
|
|
2009-06-26 19:33:20 +00:00
|
|
|
void
|
2010-10-18 17:27:14 +00:00
|
|
|
meta_window_actor_update_opacity (MetaWindowActor *self)
|
2009-06-26 19:33:20 +00:00
|
|
|
{
|
2010-10-18 17:27:14 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2013-12-06 18:44:31 +00:00
|
|
|
MetaWindow *window = priv->window;
|
2009-06-26 19:33:20 +00:00
|
|
|
|
2014-02-25 00:22:56 +00:00
|
|
|
if (priv->surface)
|
|
|
|
clutter_actor_set_opacity (CLUTTER_ACTOR (priv->surface), window->opacity);
|
2009-06-26 19:33:20 +00:00
|
|
|
}
|
2011-06-13 21:53:23 +00:00
|
|
|
|
|
|
|
void
|
|
|
|
meta_window_actor_set_updates_frozen (MetaWindowActor *self,
|
|
|
|
gboolean updates_frozen)
|
|
|
|
{
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
MetaWindowActorPrivate *priv = self->priv;
|
2011-06-13 21:53:23 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
updates_frozen = updates_frozen != FALSE;
|
2011-06-13 21:53:23 +00:00
|
|
|
|
window-actor: Split into two subclasses of MetaSurfaceActor
The rendering logic before was somewhat complex. We had three independent
cases to take into account when doing rendering:
* X11 compositor. In this case, we're a traditional X11 compositor,
not a Wayland compositor. We use XCompositeNameWindowPixmap to get
the backing pixmap for the window, and deal with the COMPOSITE
extension messiness.
In this case, meta_is_wayland_compositor() is FALSE.
* Wayland clients. In this case, we're a Wayland compositor managing
Wayland surfaces. The rendering for this is fairly straightforward,
as Cogl handles most of the complexity with EGL and SHM buffers...
Wayland clients give us the input and opaque regions through
wl_surface.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND.
* XWayland clients. In this case, we're a Wayland compositor, like
above, and XWayland hands us Wayland surfaces. XWayland handles
the COMPOSITE extension messiness for us, and hands us a buffer
like any other Wayland client. We have to fetch the input and
opaque regions from the X11 window ourselves.
In this case, meta_is_wayland_compositor() is TRUE and
priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11.
We now split the rendering logic into two subclasses, which are:
* MetaSurfaceActorX11, which handles the X11 compositor case, in that
it uses XCompositeNameWindowPixmap to get the backing pixmap, and
deal with all the COMPOSITE extension messiness.
* MetaSurfaceActorWayland, which handles the Wayland compositor case
for both native Wayland clients and XWayland clients. XWayland handles
COMPOSITE for us, and handles pushing a surface over through the
xf86-video-wayland DDX.
Frame sync is still in MetaWindowActor, as it needs to work for both the
X11 compositor and XWayland client cases. When Wayland's video display
protocol lands, this will need to be significantly overhauled, as it would
have to work for any wl_surface, including subsurfaces, so we would need
surface-level discretion.
https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 22:21:11 +00:00
|
|
|
if (priv->updates_frozen != updates_frozen)
|
|
|
|
{
|
|
|
|
priv->updates_frozen = updates_frozen;
|
|
|
|
if (updates_frozen)
|
|
|
|
meta_window_actor_freeze (self);
|
|
|
|
else
|
|
|
|
meta_window_actor_thaw (self);
|
2011-06-13 21:53:23 +00:00
|
|
|
}
|
|
|
|
}
|