When a transient window becomes transient, check if the parent is
sticky, and if it is, make the transient sticky as well. This handles
situations where e.g. a utility dialog (such as search and replace) is
opened on a sticky window, also making the utility dialog sharing the
same stickyness state.
This is also more in line with the semantics of making a window sticky,
where transient would implicitly become sticky as a side effect.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3870>
If a transient window is sticky (visible on all workspaces) and it gets
activated, we'd call move_worskpace() which would effectively unstick
it, which is rather unexpected. It'd also effectively unstick its parent
as well, due to moving a transient window also moves its descendants and
ascendants.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3870>
Introduced in libinput 1.26 this feature allows restricting the
tablet tool pressure range to a subset of its physical range. The
use-case is either to require some higher-than-usual minimum pressure
before the pen reacts, or lower-than-usual pressure to reach the maximum
logical pressure.
libinput takes a [0.0, 1.0] normalized range which we expose as percent
in the gsettings. The wacom driver doesn't have an exact equivalent but
it has a Threshold setting (range [1, 2048]) that defines when a button
is generated for tip down.
See gsettings-desktop-schemas!84
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3794>
This mapper hooks into CLUTTER_BUTTON_PRESS/RELEASE events with a
clutter button of zero but a nonzero evcode (e.g. BTN_STYLUS).
It then looks up the available button actions and implements
switch-monitor and keybindings using the MetaTabletActionMapper parent
class.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
Unlike most other schemas the path for a tool requires a bit of
processing (serial number or tablet vid/pid if there's no serial number).
Let's make the tool settings available through the MetaInputSettings
instead of having to duplicate that path composition in the caller.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
Stylus actions that don't map into LMR or back/forward are now created
as a clutter button event with a button number of zero. Nothing is
actually done with those events for now, they're just discarded later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
For stylus buttons we apply a button mapping, e.g. secondary button ->
right. This mapping was previously applied to the clutter event's evdev
code only, not the actual clutter button. As a result, gnome-shell would
always treat the BTN_STYLUS as middle and BTN_STYLUS2 as right,
regardless of the mapping.
Move the mapping up so we first adjust our evcode, then proceed with
the usual mappings.
Note that this temporary breaks the stylus mapping to Back/Forward which
will be fixed in a follow-up commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
Use the helper function for mapping a stylus tool evdev code to a
clutter button code. This fixes a (theoretical) issue - if a tool were
to send any button other than the one we handled those would likely be
BTN_SIDE and friends and we'd likely end up with negative button
numbers. The BTN_TOOL_PEN range is not predicable enough to do any sort
of calculation conversion because things like BTN_TOOL_DOUBLETAP have
specific meanings that aren't actually buttons.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
This complements the existing clutter->evdev and evdev->clutter helpers,
but this time for buttons we expect from a stylus tool. We also need to
convert left/middle/right for the Wacom puck/lens cursor tools but that
particular conversion is lossy.
Note that these are more restrictive than the normal codes - if we
get "other" buttons from a stylus we don't really know what they could
possibly map to. So we safely map what looks like buttons from a mouse
but otherwise complain and return zero.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
This is prep work for using the same functionality for tablet tools as
well. The new MetaTabletActionMapper takes care of the event bubbling
via the device-added/removed and input-event signals and provides the
helper functions to cycle outputs and/or emulate keybindings.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3649>
The pointer returned by cogl_color_copy() was not stored anywhere and
the allocation it was pointing to got leaked. However we also don't need
to use that function here and can just copy the struct values directly.
Fixes: dc52ccc75 ("cleanup: Port from ClutterColor to CoglColor")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3884>
Instead of using cairo for scaling and rotating cursors before putting
them on a plane, use Cogl. For now still download them back to the CPU
so we can place them on a dumb buffer, but can explore rendering to a
DMA buffer directly as a future improvement.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>
A ClutterPipelineNode took a reference to the passed pipeline and used
it during the lifetime of the paint node. In theory this meant that a
paint node pipeline could be changed, and reused, affecting the previous
paint node drawing.
Referencing instead of copying also meant the ClutterPipelineNode isn't
able to itself manipulate the pipeline any further.
Fix both of these issues by copying, instead of adding a reference to,
the passed pipeline. While resulting in some additional allocation
over head, it means we can now eventually handle color transformations
automatically for ClutterPipelineNode's.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>
When running with COGL_DEBUG=show-source, log what pipeline and shader
program is used when painting, and what shader source code corresponds
to each shader program.
This helps identify what shader is used when painting to what
framebuffer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>
So far 'color-state' is added, intended to tag pipelines with color
state transformation capabilities. Color state transformation snippets
are tagged with it. Eventually handlers of pipelines will use this
information to on-demand decorate pipelines with color transformation
snippets.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>
A snippet is assigned a capability, which is then transferred to the
pipeline it gets added to. Managers of pipelines can then check whether
a pipeline it got handed whether it has a certain capability, and if
not, handle the situation where it is not.
The intention is to allow Clutter to tag color state transformation
snippets with a capability, allowing generic paint nodes to handle color
transformations when needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>
This looks at the color state it got from the actor on construction, and
the target color state from the paint context and generates (and caches)
color aware pipelines used for painting. One of the purposes here is for
mixing SDR and HDR content and painting to a HDR monitor. If HDR (or
optical blending) isn't activated, the produced shaders will be
equivalent to what we had before.
Also add some names to the piplines, as this helps identifying what
pipeline source is associated with what pipeline.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>
In some of the places we need more context than just the CoglContext, so
prepare for that by passing around the paint context, which carries
this, everywhere instead. It won't be needed everywhere, but lets stay
consistent.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3433>